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1 The EUMETSAT SAF on Climate Monitoring 
The importance of climate monitoring with satellites was recognized in 2000 by EUMETSAT 
Member States when they amended the EUMETSAT Convention to affirm that the 
EUMETSAT mandate is also to “contribute to the operational monitoring of the climate and 
the detection of global climatic changes". Following this, EUMETSAT established within its 
Satellite Application Facility (SAF) network a dedicated centre, the SAF on Climate 
Monitoring (CM SAF, http://www.cmsaf.eu). 

The consortium of CM SAF currently comprises the Deutscher Wetterdienst (DWD) as host 
institute, and the partners from the Royal Meteorological Institute of Belgium (RMIB), the 
Finnish Meteorological Institute (FMI), the Royal Meteorological Institute of the Netherlands 
(KNMI), the Swedish Meteorological and Hydrological Institute (SMHI), the Meteorological 
Service of Switzerland (MeteoSwiss), and the Meteorological Service of the United Kingdom 
(UK MetOffice). Since the beginning in 1999 , the EUMETSAT Satellite Application Facility 
on Climate Monitoring (CM SAF) has developed and will continue to develop capabilities for 
a sustained generation and provision of Climate Data Records (CDR’s) derived from 
operational meteorological satellites. 

In particular the generation of long-term data records is pursued. The ultimate aim is to make 
the resulting data records suitable for the analysis of climate variability and potentially the 
detection of climate trends. CM SAF works in close collaboration with the EUMETSAT 
Central Facility and liaises with other satellite operators to advance the availability, quality 
and usability of Fundamental Climate Data Records (FCDRs) as defined by the Global 
Climate Observing System (GCOS). As a major task the CM SAF utilizes FCDRs to produce 
records of Essential Climate Variables (ECVs) as defined by GCOS. Thematically, the focus 
of CM SAF is on ECVs associated with the global energy and water cycle. 

Another essential task of CM SAF is to produce data records that can serve applications 
related to the new Global Framework of Climate Services initiated by the WMO World 
Climate Conference-3 in 2009. CM SAF is supporting climate services at national 
meteorological and hydrological services (NMHSs) with long-term data records but also with 
data records produced close to real time that can be used to prepare monthly/annual updates of 
the state of the climate. Both types of products together allow for a consistent description of 
mean values, anomalies, variability and potential trends for the chosen ECVs. CM SAF ECV 
data records also serve the improvement of climate models both at global and regional scale. 

As an essential partner in the related international frameworks, in particular WMO SCOPE-
CM (Sustained COordinated Processing of Environmental satellite data for Climate 
Monitoring), the CM SAF - together with the EUMETSAT Central Facility, assumes the role 
as main implementer of EUMETSAT’s commitments in support to global climate monitoring. 
This is achieved through: 

• Application of highest standards and guidelines as lined out by GCOS for the satellite 
data processing, 

• Processing of satellite data within a true international collaboration benefiting from 
developments at international level and pollinating the partnership with own ideas and 
standards, 

• Intensive validation and improvement of the CM SAF climate data records, 
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• Taking a major role in data record assessments performed by research organisations 
such as WCRP. This role provides the CM SAF with deep contacts to research 
organizations that form a substantial user group for the CM SAF CDRs, 

• Maintaining and providing an operational and sustained infrastructure that can serve 
the community within the transition of mature CDR products from the research 
community into operational environments. 

A catalogue of all available CM SAF products is accessible via the CM SAF webpage, 
www.cmsaf.eu/. Here, detailed information about product ordering, add-on tools, sample 
programs and documentation is provided. 
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2 Introduction 
This CM SAF Algorithm Theoretical Basis Document (ATBD) describes a new probabilistic 
cloud masking product - denoted CMA-prob – which has been developed by CM SAF during 
the CDOP-2 phase. It is based on Bayesian theory and it is complementary to the SAFNWC 
PPS cloud mask which was used when defining the CM SAF CLARA-A1 data record and 
which is planned for use also for the CLARA-A2 data records (i.e., the Fractional Cloud 
Cover product CM-11011). The idea is that on a longer term (beyond CLARA-A2) this new 
probabilistic cloud mask will replace the current one in order to improve the error 
characterisation of cloud masking and its influence on downstream cloud, surface radiation 
and surface albedo products. For CLARA-A2 only a demonstration product is intended for 
provision to users for preliminary evaluation. 

The ATBD follows largely the detailed description of the method published by Karlsson et al. 
(2015).  
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3 Theoretical description of the CMA-prob method 

3.1 Background – problems with traditional cloud masking and suggested new 
approaches 

For many years the definition of fixed cloud masks or cloud masks with a small set of quality 
flags has been the most common way of solving the cloud screening problem in applications 
based on passive multispectral satellite imagery. Many examples of this exist in the literature, 
e.g., Dybbroe et al., (2005a, 2005b), Kriebel et al. (2003), Derrien and LeGleau (2005), Frey 
et al. (2008) and Pavolonis et al. (2005). The use of a fixed cloud mask is straightforward for 
downstream applications (e.g. for Sea Surface Temperature (SST), surface albedo, clear sky 
radiance and NDVI vegetation index retrievals) meaning that all cloudy pixels should be 
discarded in the retrieval of the actual parameter. However, the drawback is that no or very 
limited information about the uncertainty in the cloud screening is generally available. 
Consequently, also for parameters derived downstream the error characteristics are generally 
unknown even if specific internal parameter-specific algorithm uncertainties may be known. 
Furthermore, various cloud masks have generally been defined aiming for different purposes 
and applications. Consequently, the performance may vary considerably from method to 
method regarding whether the cloud screening is executed in a clear conservative way (i.e., 
defining clear pixels with high confidence) or in a cloud conservative way (i.e., defining 
cloudy pixels with high confidence). The desire to instead define a more flexible cloud mask, 
suitable for any (or at least most) downstream applications, has become increasingly 
important recently. Such a cloud mask can either be expressed as a cloud index (as suggested 
by Khlopenkov and Thrishchenko, 2007) or a cloud probability (Merchant et al., 2005) 
meaning that any user should be able to define the most suitable mode of operation. In other 
words, it could be used anywhere in the range from the clear conservative mode to the cloud 
conservative mode by just changing the tolerance level of the required cloud probabilities.  

Although statistical and probabilistic (Bayesian) theory has been well established since 
decades (or even centuries) a problem has been to find a good observational reference to 
represent the true global cloud occurrence from which a firm statistical cloud distribution 
database can be built. However, with the 2006 launch of the Cloud-Aerosol Lidar with 
Orthogonal Polarization (CALIOP) onboard the Cloud-Aerosol Lidar and Infrared Pathfinder 
Satellite Observations (CALIPSO) satellite, the situation has improved considerably. CALIOP 
offers global cloud observations with higher detection sensitivity than any other passive 
instrument (Winker et al., 2009). Furthermore, observations can be matched simultaneously in 
time (however, restricted to certain conditions) to observations by current operational AVHRR 
sensors. This has triggered numerous studies examining AVHRR-based cloud detection 
methods in detail (e.g., Karlsson and Dybbroe, 2010, Karlsson and Johansson, 2013 and 
Stengel et al., 2014). It has also paved the way for more systematic attempts to provide cloud 
probabilities rather than fixed cloud masks (Heidinger et al., 2012, and Musial et al., 2014) 
and the CMA-prob development is another example of this.      

3.2 Bayesian theory 
Let us first recapitulate some fundamentals of the probabilistic statistical theory. The theory is 
based on the pioneering work by Thomas Bayes who already in 1763 formulated his famous 
theorem (nowadays referred to as Bayes’ Theorem) for estimation the posteriori probability of 
an event as a function of likelihoods (conditional probabilities) and a priori probabilities of 
other events. In the context of analysis of radiance feature vectors measured by satellite 
sensors we may express Bayes’ Theorem as follows after introducing a number of definitions. 
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If F is a vector of satellite radiances or image features (e.g., brightness temperature 
differences or reflectances) we may denote the posteriori conditional probability that it is 
cloudy when F is given as P(cloudy|F). In the same sense we may denote the conditional 
probability that vector F occurs given it is cloudy as P(F|cloudy). If also introducing the 
overall probability (climatological mean) that it is cloudy as 𝑃𝑃(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)�������������� and the overall 
probability that any given value of F occurs as P(F)  we may write Bayes’ Theorem as 
follows: 
  

𝑃𝑃(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐|𝑭𝑭) =
𝑃𝑃(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)��������������𝑃𝑃(𝑭𝑭|𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)

 𝑃𝑃(𝑭𝑭)
  

            (1)
  

Despite its simple form, the solution of Eq. 1 is not easy to find in a situation with 
multispectral measurements (i.e., when the dimension of F is large). The estimation of 
parameters in the right hand side of Eq. 1 (especially P(F|cloudy)) becomes increasingly 
difficult the more image features that are chosen.  It then requires extraction of very large 
statistical training datasets to really describe the dependence on individual image features and, 
in addition, also the effect of their mutual correlation. What complicates things even further is 
that, even with one specific realisation of feature vector F, probabilities may differ depending 
on different environmental situations (e.g. if the pixel measurement is made in winter or in 
summer, over land or over ocean, in mountainous terrain or over desert, etc.). Thus, the 
training process needs to take into account additional ancillary information for a correct 
description of environmental conditions.  

 
To reduce complexity of the problem some approximations may be utilised. One way to go 
could be the entirely empirical approach of estimating P(cloudy|F) directly from predefined 
Lookup Tables composed during training with some stratification based on ancillary data. 
Such a method has been demonstrated by Musial et al. (2014). Alternatively, some 
simplifications and approximations could be made to Eq. 1. One such simplification is 
denoted The Naïve Bayesian approach and this is used for the CMA-prob method.  

3.3 The CMA-prob Naïve Bayesian approach 
If assuming that individual image feature components fi in F are all independent (i.e., image 
features are uncorrelated), individual probabilities may now be multiplied to get the total 
probability, following the fundamental statistical rule for “Compound Probability of 
Independent Events”. Thus, Eq. 1 reduces to 
 

𝑃𝑃(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐|𝑭𝑭) =
𝑃𝑃(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)��������������∏ 𝑃𝑃(𝑓𝑓𝑖𝑖|𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)𝑖𝑖

𝑃𝑃(𝑭𝑭)
  

           (2) 

This approximation of Bayes’ Theorem is denoted the Naïve Bayesian approximation.  

The problem has now been reduced to estimating individual probabilities 𝑃𝑃(𝑓𝑓𝑖𝑖|𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) and 
then simply multiplying them. However, it must be emphasized that even if we have achieved 
a very simple equation for calculation of the probabilities, the big scientific challenge lies in 
defining and estimating the conditional probabilities in the right-hand side of the equation. 
This includes the very fundamental choice of appropriate image features fi. These must be 
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chosen in an optimal way with all  of them having documented capabilities to provide 
essential information about cloud occurrence. The following sub-sections will describe the 
methodology used and the choice of optimal image feature components fi . 

We notice also that there must be a mutual inter-dependence between 𝑃𝑃(𝑓𝑓𝑖𝑖|𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)  and 
𝑃𝑃(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐|𝑓𝑓𝑖𝑖). More clearly, if knowing the conditional probability that it is cloudy given a 
certain image feature value, we can also calculate it the other way around from the same 
statistical training dataset (provided that both absolute and relative frequencies of cloud 
occurrences are stored). This fact will be utilised when defining the method. Remaining 
factors on the right hand side of Eq. 2 may also be calculated from training data. An 
estimation of the mean cloud occurrence 𝑃𝑃(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐���������) is possible and the factor P(F) may be 
estimated by summing contributions from both cloudy and clear cases and then compute the 
overall frequency for which any particular realisation of vector F occurs. 

The Naïve Bayesian approximation has been successfully applied to many scientific 
applications (e.g., Kossin and Sitkowski, 2009) and it has also recently been applied to the 
AVHRR cloud screening problem (Heidinger et al., 2012). The main difference between 
CMA-prob and the latter method lies in the choice of image features and the used ancillary 
information.  

3.4 Estimating conditional cloud probabilities from CALIPSO measurements 
If having access to a system that can match and co-locate CALIPSO/CALIOP and 
NOAA/METOP AVHRR measurements it is relatively straight-forward and simple to estimate 
conditional cloud probabilities, i.e. the frequency that it is cloudy at a certain image feature 
value which is formally expressed as  𝑃𝑃(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐|𝑓𝑓𝑖𝑖). However, as previously mentioned, this 
should only be done by using some restrictions on e.g. illumination conditions and the 
geographical coverage in order to avoid too broad distributions and distributions with a 
limited dynamical range of probabilities. If not doing this, the final ability to separate cloudy 
from cloud-free radiances would be reduced (i.e., too often give cloud probabilities close to 
50 %). 

  
Figure 3-1 Cloud probabilities estimated from global CALIPSO-CALIOP cloud data in the 

period 2006-2009 as a function of AVHRR 0.6 µm visible reflectances (denoted Rvis) over 
Low Latitude ocean surfaces (left - defined in text) and over High Latitude  mountain areas 
(right - defined in text). 

Figure 3-1 shows the estimated cloud probabilities as a function of the AVHRR visible 
reflectances of the 0.6 µm channel over low-latitude ocean surfaces (left panel) and over high-
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latitude snow-covered mountain surfaces (right panel). The distinction between low- and high 
latitudes is made at +/- 45 degrees latitude and mountainous terrain is defined as areas with 
topography above 500 m. Information on snow-cover is taken from the National Snow and 
Ice Data Center (NSIDC) dataset provided with the CALIPSO-CALIOP cloud product.  

From Figure 3-1 we conclude that cloud probabilities increase rapidly with reflectance over a 
very dark surface such as the ice-free ocean surface. Probabilities exceed 50 % already at a 
very low reflectance value (at approximately 6 % reflectance) and reach the 80 % level at 
approximately 18 % reflectance. Thus, conditions for cloud-screening appear almost ideal. 
This is not the case for the second situation in Figure 3-1 (right) showing conditions over 
snow-covered ground in mountainous regions. Here, we hardly see any reflectance value 
where cloud probability exceeds 50 % (which would be needed for this image feature to be 
useful for cloud screening purposes). This occurs only for moderately high reflectances close 
to 40 % and for very high reflectances (approaching 100 %). For the inter-mediate region of 
high reflectances probabilities are actually rather low which mainly is explained by the effect 
of non-isotropic reflection at very high solar zenith angles caused by illuminated snow-
covered mountain sides.   
 
A similar situation is seen over the same Earth surfaces in Figure 2 for the infrared brightness 
temperature difference of the 11 µm channel with regard to the surface skin temperature. Very 
good separability conditions are seen over low latitude ocean surfaces while they are very 
problematic over mountainous terrain. Notice in particular the effect of near-surface 
temperature inversions over mountainous terrain leading to a specific peak in cloud 
probability (although just slightly exceeding 50 %) for negative values of the temperature 
difference (i.e., showing that clouds may then frequently be warmer than the surface 
temperature). 

 
Figure 3-2 Cloud probabilities estimated from CALIPSO-CALIOP cloud data in the period 

2006-2009 as a function of AVHRR temperature differences (denoted Tirdiff) between 
AVHRR 11 µm brightness temperatures and the ERA-Interim (Dee et al., 2011) surface skin 
reference temperature over Low Latitude ocean surfaces during day (left) and over High 
Latitude  mountain areas during night (right). 

We conclude from Figure 3-1 and Figure 3-2 that conditions for efficient cloud screening may 
be drastically different depending on the geographic location and the prevailing illumination 
conditions (i.e., if it is day or night). This is one of the explanations for the very successful 
performance of simple bi-spectral VIS-IR cloud screening methods at low- to moderate 
latitudes (best exemplified by the results derived mainly from geostationary satellite data of 
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the International Satellite Cloud Climatological Project – ISCCP – see Rossow et al., 1999). 
On the other hand, it also clearly illustrates the serious limitations for the same methods over 
high latitudes and over the Polar Regions. 

3.5 Definition of a basic sub-set of constrained AVHRR image features   
The Naïve Bayesian CMA-prob method utilises estimated conditional cloud probabilities 
(introduced in the previous section) for a sub-set of image features. However, rather than to 
define them in their purest form (as illustrated in Figures 1 and 2) we have chosen to define 
them linked to pre-calculated dynamic image feature thresholds used by the Polar Platform 
System cloud software package (PPS, see Dybbroe et al, 2005a, 2005b) and in this particular 
case version PPS 2014 patch 1 [RD 1]. The reason for linking image features to pre-calculated 
thresholds is that the latter have been defined in a way that takes a wide range of 
environmental conditions into account (see Dybbroe et al., 2005a for more details). This 
concerns image feature variability due to the following factors: Solar and satellite geometry 
(direct angular dependence and dependence on scattering angles), prevailing atmospheric 
profiles of temperature and humidity, climatological ozone and aerosol amounts, topography 
and land cover and spectral surface emissivities. If not taking all these factors into account 
when training the probabilistic classifier, results would risk being imprecise and most likely 
misleading under certain conditions or at certain geographic locations. We claim that it is 
better to piggy-back ride on existing prepared threshold information, composed from 
knowledge built over many years of experience of cloud thresholding, than to try to train a 
classifier from scratch. The latter would require the creation of very large dimension Look-up 
Tables of statistical relations of cloudiness and image features and their respective 
dependencies on a wide range of environmental factors. 
 
 
 

 
Figure 3-3 Cloud probabilities estimated from CALIPSO-CALIOP cloud data in the period 

2006-2009 as a function of AVHRR temperature differences between AVHRR channel 4 
and 5 (denoted Feature in the plots) over Low Latitude ocean surfaces during night. Left 
panel shows results in original form and right panel if plotting results as a function of 
temperature differences related to PPS thresholds (consisting of dynamic threshold plus a 
tuning offset value).   
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To illustrate the usefulness of this concept we consider one of the most commonly used 
AVHRR image features for detecting thin cirrus clouds (originally suggested by Inoue, 1987): 
The brightness temperature difference between AVHRR channels 4 and 5 at 11 µm and 12 
µm, respectively. The main principle used for Cirrus detection is normally that the cloud 
transmissivity for thin ice clouds is higher in AVHRR channel 4 than in AVHRR channel 5, 
thus creating a positive brightness temperature difference between AVHRR channels 4 and 5. 
Figure 3-3 shows cloud probabilities as a function of this temperature difference (left part of 
Figure 3-3) but also as a function of the temperature difference relative to the corresponding 
PPS threshold (right part of Figure 3-3). 
 
We notice that in its original form (left panel of Figure 3-3) we have two peaks in cloud 
occurrence where one is for differences close to zero K and the other for values exceeding 
approximately 4 K. The area between the peaks spans an interval of almost 4 K where cloud 
probabilities to a large extent are lower than 50 %. In the alternative formulation (Figure 3-3, 
right panel) results are much more distinctly organised and the range of probability values 
have been enlarged (which is favourable for the probabilistic classification process). The latter 
circumstance is especially true for the leftmost part of the distribution. We may interpret this 
as primarily an effect of being able to take into account the natural cloud-free contribution 
from atmospheric water vapour emission in the split-window channels. This emission is also 
able to create a discernible temperature difference in the absence of cirrus clouds explaining 
the broader and less decisive probability distribution in its original form for temperature 
differences below approximately 4 K. Resulting distributions after the coordinate 
transformation now clearly separates thin cirrus clouds to the right in the plot from the opaque 
clouds in the left part of the plot with cloud-free cases now concentrated around the 
transformed value of around –1 K. The fact that this value is not 0 K might indicate that the 
currently used PPS threshold is not optimal (at least, if taking the currently used CALIPSO 
dataset as reference). However, this is of no importance here since the correct (CALIPSO-
derived) distribution relative to the possibly biased PPS threshold will be the one used 
anyway.    

 

Table 3-1 Spectral channels of the Advanced Very High Resolution Radiometer (AVHRR). 
Three different versions of the instrument are described as well as corresponding 
satellites. 

Channel  
Number  

Wavelength 
(µm) 
AVHRR/1 
Tiros-N, 
NOAA-6,8,10 

Wavelength 
(µm) 
AVHRR/2 
NOAA-7,9,11,12,14 

Wavelength 
(µm) 
AVHRR/3 
NOAA-15,16,17,18 
NOAA-19, Metop-A 
Metop-B 

1 
2 
3A 
3B 
4 
5 

0.58-0.68 
0.725-1.10 
- 
3.55-3.93 
10.50-11.50 
Channel 4 repeated     

0.58-0.68 
0.725-1.10 
- 
3.55-3.93 
10.50-11.50 
11.5-12.5 

0.58-0.68 
0.725-1.10 
1.58-1.64 
3.55-3.93 
10.50-11.50 
11.5-12.5 
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Table 3-2 Used transformed AVHRR image features for daytime probabilistic cloud masking. 

Feature name Definition Main cloud detection ability 
 

Rvis 
 

 
Over land: AVHRR channel 1 TOA 
reflectances minus PPS thresholds 

 
Over ocean: AVHRR channel 2 TOA  

reflectances minus PPS thresholds 
 

 
Identification of bright clouds over dark 
Earth surfaces 

 
Tirdiff 

 

 
AVHRR channel 4 brightness 

temperatures minus ERA-Interim (Dee 
et al, 2011) surface skin temperatures 

minus PPS thresholds 
  

 
Identification of clouds which are 
significantly colder than the Earth surface 

 
Rnir_3a 

(morning orbit 
AVHRR/3) 

 

 
AVHRR channel 3a reflectances 
divided by AVHRR channel 1 

reflectances 

Identification of clouds with significant 
reflection in the visible near-infrared 
infrared region (in particular water clouds 
and thick multi-layered ice clouds over 
snow-covered surfaces) 

 
Rswir_3b 

(afternoon orbit all 
AVHRRs and morning 

orbit AVHRR/2) 
 

 
(AVHRR channel 3b brightness 

temperatures minus AVHRR channel 5 
brightness temperatures) 

minus PPS thresholds 
 

 
Identification of clouds with significant 
reflection in the short-wave infrared region 
(water clouds and thick multi-layered ice 
clouds), alternatively, clouds with 
significantly higher transmissivity in 
channel 3b than in channel 5 (thin ice 
clouds) 

 
Texture_day 

 

 
Over land: Not used (surface variability 

generally too large)! 
 

Over ocean: (Sum of local 3x3 pixel 
variances for  

AVHRR channel 1 TOA reflectances, 
AVHRR channel 3b brightness 

temperatures (or AVHRR channel 3a 
reflectances),  

AVHRR channel 4 brightness 
temperatures and 

AVHRR channel 3b and 5 brightness 
temperature differences) 

minus PPS thresholds 
    

 
Identification of fractional or broken clouds 
over ocean 
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With this background we now list in Table 3-2 and Table 3-3 a set of 8 transformed and 
constrained image features (related to original AVHRR channels described in Table 3-1) that 
will be used later for the definition of the CMA-prob probabilistic cloud mask estimates. Four 
of them are selected for daytime conditions (i.e., solar zenith angles below 90° - Table 3-2) 
and four of them for night-time conditions (Table 3-3). However, one feature (Tirdiff) is used 
both day and night. Finally, in order to account for geographical and topographical differences 
we define 9 geographical regions over which we will train the probabilistic classifiers. These 
regions are listed in Table 3-4. 
 
 
Table 3-3 Used transformed AVHRR image features for night-time probabilistic cloud 

masking. 

Feature name Definition Main cloud detection ability 
 

Tirdiff 
 

 
AVHRR channel 4 brightness 

temperatures minus ERA-Interim 
surface skin temperatures 

minus PPS thresholds 
  

 
Identification of clouds which are 

significantly colder than the Earth surface 

 
Tcidiff 

 

 
AVHRR channel 4 brightness 

temperatures minus AVHRR channel 5 
brightness temperatures  
minus PPS thresholds 

  

 
Identification of thin cirrus clouds  

 
Twdiff 

 

 
(AVHRR channel 3b brightness 

temperatures minus AVHRR channel 4 
brightness temperatures) 

minus PPS thresholds 
 

 
Identification of water clouds 

 
Texture_night 

 

 
Over land: Not used (surface variability 

generally too large)! 
 

Over ocean: (Sum of local 3x3 pixel 
variances for  

AVHRR channel 4 brightness 
temperatures and 

AVHRR channel 3b and 5 brightness 
temperature differences) 

minus PPS thresholds 
    

 
Identification of fractional or broken clouds 

over ocean 

 

Snow and land use information were taken from National Snow and Ice Data Center (NSIDC) 
analyses and International Geosphere Biosphere Programme (IGBP) analyses, both of them 
provided together with the used CALIPSO-CALIOP cloud product (denoted Cloud and 
Aerosol Layer Information product version 3.01). 
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Table 3-4 Geographical regions used when training the probabilistic classifiers. 

Geographical region Definition 
 

Polar ocean 
 

 
Ice-covered ocean at latitudes higher than 40°  

 
 

High-latitude ocean 
 

 
Ice-free ocean at latitudes higher than 40° 

  
 

Low-latitude ocean 
 

 
Ocean at latitudes lower than 40° 

 
 

High-latitude snow –covered 
mountains 

 

 
Mountain regions (topography exceeding 500 m) with 

snow-cover at latitudes higher than 40°    

 
High-latitude snow-free mountains 

 
Mountain regions (topography exceeding 500 m) without 

snow-cover at latitudes higher than 40°    
 

 
High-latitude snow-covered land 

 
Snow-covered land (topography below 500 m) at latitudes 

higher than 40° 
 

 
High-latitude snow-free land 

 

 
Snow-free land (topography below 500 m) at latitudes 

higher than 40° 
 

 
Desert regions  

 

 
Land areas without vegetation at latitudes lower than 40° 

 
Low-latitude vegetated regions 

 

 
Vegetated land areas at latitudes lower than 40° 

 
 

3.6 Training the classifier using CALIPSO-CALIOP cloud data 
For developing the CMA-prob classifier we have taken advantage of the previously collected 
dataset with optimally matched NOAA-18 and CALIPSO orbits described by Karlsson and 
Johansson (2013). This study and also several other studies  (e.g., Stengel et al., 2012)  have 
demonstrated that it is possible to collocate NOAA AVHRR data with CALIPSO data with 
comparable quality to what is achieved when matching with other internal datasets in the 
Aqua train (e.g. MODIS data).  Some example results from this dataset have already been 
shown in Sections 3.4 and 3.5. However, some important and necessary restrictions to the 
utilised information have been applied during the training process.  
 
A great asset of the CALIPSO-CALIOP cloud products is the superior sensitivity for cloud 
detection compared to corresponding conditions for passive data like data from the AVHRR 
sensor. But this is also a problem when using this information as the basis for a statistical 
training of a probabilistic cloud masking method. More clearly, there is a risk for “over-
training”, i.e., that we force the method to try to detect clouds that are theoretically impossible 
to detect from AVHRR sensor data. As a result, the probabilistic cloud-screening method 
would then risk to systematically creating artificial clouds in truly cloud-free areas since the 
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cloud-free signal cannot be confidently separated from the cloudy signal for e.g. sub-visible 
cirrus clouds. Consequently, we need to find a way to restrict the used CALIOP-based cloud 
mask in the training process to include only those clouds which we believe are potentially 
discernible also in AVHRR images. In other words, we need to define as accurately as 
possible the AVHRR cloud detection limit. On the other hand, applied training restrictions 
must not go too far so that they preclude detecting potentially detectable clouds which are not 
generally detected by today’s cloud screening methods. We need to leave some margin for 
further improvement of cloud detection performance even if that margin probably is very 
small (when considering that the experience of AVHRR cloud detection is now based on more 
than 30 years of development).   
 
We have again utilised the dataset collected by Karlsson and Johansson (2013) for finding the 
appropriate cloud detection limit. They concluded that the PPS method reached its optimal 
performance for clouds with optical thicknesses greater than 0.35. Below this value the 
method started to systematically miss clouds with increasing magnitude for smaller and 
smaller cloud optical depths. Further analysis of their data revealed that below a cloud optical 
thickness of approximately 0.2 the PPS loss of clouds exceeds 50 %, i.e., less than 50 % of 
the clouds with this optical thickness are detected. We have used this value (i.e., cloud optical 
thickness of 0.2) to represent the AVHRR cloud detection limit in the training of the 
probabilistic classifier. CALIPSO-CALIOP detected clouds below this threshold are treated as 
being non-existing and equivalent to cloud-free conditions. This compromise solution means 
that some clouds are still likely to be non-detectable by the probabilistic classifier but some of 
the currently non-detected clouds in the cloud optical thickness interval 0.2-0.35 may 
potentially be identified. As a consequence, our probabilistic classifier might still over predict 
cloud probability to some extent which may have some consequence for the final use of the 
results (for example, when creating new fixed cloud masks based on the probabilistic results).  
 
The final training dataset consisted of the same matched global NOAA-18 and CALIPSO 
orbits (99 orbits in total) as being used by Karlsson and Johansson (2013). In addition, to 
cover also measurements from the 1.6 µm channel (channel 3A in Table 3-1) not available for 
NOAA-18, the training dataset has been extended with 385 matched orbits from the NOAA-
17 satellite. The large number of matched orbits in comparison to the NOAA-18 dataset is 
explained by the fact that matches with CALIPSO is only possible for morning orbit satellites 
close to the latitudes of around 70 degrees on both hemispheres. Also, instead of full global 
orbits being matched as for the NOAA-18 case, we have for every match only access to a 
limited part of an orbit (approximately equivalent to the AVHRR swath width since orbital 
tracks crosses almost perpendicularly). Thus, to reach statistical significance of results we 
need to use a larger number of matched orbits.  Notice also that the matched morning satellite 
dataset is only used for studies of AVHRR channel 3A and its related image features. For all 
other features, the statistics collected from the NOAA-18 dataset has been used. 
 
The collected training dataset spans the period 2006-2009 and provides a reasonable global 
coverage over all seasons during that period. All in all it comprises almost 1 million matches 
of AVHRR Global Area Coverage (GAC) and CALIOP pixels/samples at approximately 5 km 
horizontal resolution. The constrained training (i.e., image features now being related to PPS 
threshold information) is based on results from the PPS software version 2014 patch 1 [RD 1]. 
This is a much advanced PPS version compared to the original method described by Dybbroe 
et al. (2005). The main new features of the method concerns adaptations to global processing 
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(e.g., over desert and Polar Regions) and a systematic use of prescribed MODIS-derived 
surface emissivity information.  
 

3.7 Achieved probability distributions 
In this section we present some examples of the achieved probability distributions for most 
image features. In particular, we have chosen to display results over ice-free ocean at low 
latitudes together with results over snow-covered terrain at high altitudes (Greenland, 
Antarctica). These two different categories could be imagined as representing the least 
problematic (tropical ice-free ocean) and also the most challenging (snow-covered and very 
cold polar) of all categories. Thus, it gives some insight into what is possible and not possible 
as regards cloud screening of AVHRR imagery. Notice here that we show the conditional 
probabilities in the form 𝑃𝑃(𝑓𝑓𝑖𝑖|𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) while the inverse form has to be used in the Naïve 
Bayesian formulation. However, as previously mentioned there is a mutual inter-relation 
between the two different conditional probabilities. Thus, they can be seen as just two 
different realizations of the same probability density distribution.  
 
Figures 3-1 and 3-2 have already showed these probability distributions for image features 
Rvis and Tirdiff in Table 3-2 so we will not repeat them here.  
 
Figure 3-4 shows the distribution for the two different geographic categories for the reflected 
shortwave infrared feature Rswir_3b (see Table 3-2). We notice the particularly high 
capability of separating cloudy from cloud-free cases over Tropical Ocean. It is obvious that 
cloud reflection is significantly more pronounced that any surface reflection in AVHRR 
channel 3b (if excluding sunglint like here). However, especially important is to notice the 
very good cloud separability offered here also over snow-covered cold Polar Regions. This 
differs from the performance of the two visible and infrared features illustrated earlier in 
Figures 3-1 and 3-2, the latter showing a clearly decreasing capability for cloud screening at 
the polar location.  
 
 

 
Figure 3-4 Frequency of cloud occurrence over Tropical Ocean (left) and over Polar Snow-

covered Surfaces (right) as a function of the Rswir_3b feature (see Table 3-2) derived from 
99 globally matched NOAA-18/CALIPSO orbits in the period 2006-2009. 
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An interesting follow-on question here is to examine if the same cloud screening capability is 
retained over the polar region if replacing AVHRR channel 3b with channel 3a (defining the 
Rnir_3a feature). The probability distributions for this case are illustrated in Figure 3-5 
derived from CALIPSO matches with the NOAA-17 satellite. This also means that the ocean 
results are derived over ice-free high latitude ocean surfaces and not over tropical ocean 
surfaces. We conclude that also here we have a high capability for separating cloudy and clear 
cases over both regions. The capability seems to be even higher for the polar case due to a 
higher contrast between cloud-free and cloudy cases over a smaller value range of the image 
feature. 
 

 
Figure 3-5 Frequency of cloud occurrence over High Latitude Ice-free ocean (left) and over 

Polar Snow-covered surfaces (right) as a function of the Rnir_3a feature (see Table 3-2) 
derived from 385 globally matched NOAA-17/CALIPSO orbits in the period 2006-2009. 

 
The remaining daytime feature to illustrate is the texture feature Texture_day. However, 
since this feature is only used over ocean we compare day and night distributions over 
Tropical Ocean in Figure 3-6. We conclude that this feature seems to give good contributions 
both day and night but that the usefulness appears to be still less than for the other features. 
This concerns especially the night-time data where probabilities are generally higher than 40 
% everywhere, thus no value represents very clearly a large portion of cloud-free conditions. 
 
We have two more night-time features to illustrate and Figure 3-7 shows the distribution for 
the Tcidiff feature (see also Figure 3-3). The two distributions are rather similar but it is clear 
that the cloud probability peak for lower differences (representing thick clouds) is less 
pronounced for the polar case. This indicates a decreasing capability of identifying opaque or 
multi-layered clouds over the Polar Region.  
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Figure 3-6  Frequency of cloud occurrence over Tropical Ocean as a function of the texture 

feature (see Tables 3-2 and 3-3) during day (left) and night (right) derived from 99 
globally matched NOAA-18/CALIPSO orbits in the period 2006-2009. 

 
 
 

 
Figure 3-7 Frequency of cloud occurrence over Tropical Ocean (left) and over Polar Snow-

covered Surfaces (right) as a function of the Tcidiff feature (see Table 3-3) derived from 
99 globally matched NOAA-18/CALIPSO orbits in the period 2006-2009. 

Finally, Figure 3-8 shows the distributions for the Twdiff feature in Table 3-3. This feature is 
clearly able to separate water clouds (positive differences) from ice clouds (negative 
differences) over Tropical Ocean while this capability seems to be completely gone over the 
Polar Region. Here, only ice clouds seem to be discernible with some significance (however 
rather low probabilities).   
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Figure 3-8 Frequency of cloud occurrence over Tropical Ocean (left) and over Polar Snow-

covered Surfaces (right) as a function of the Twdiff feature (see Table 3-3) derived from 
99 globally matched NOAA-18/CALIPSO orbits in the period 2006-2009. 
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4 First results 

4.1 Product demonstration 
Figure 4-1 illustrates a case with the full cloud probability result displayed as a greyscale 
image together with a colour composite image of the original radiances. We notice from 
visual inspection that the areas with high CMA-prob cloud probabilities (white colours) 
correspond very well to cloud fields identified by visual inspection in the RGB composite for 
this particular case. However, noteworthy is that thin and broken cloud fields over the ocean 
surfaces are much more highlighted in the CMA-prob image than in the colour composite. 
This is mainly explained by the added cloud information coming from features Rswir_3b  
and Texture_day described earlier in Table 3-2. These features contain information from the 
3.7 and 12 µm channels which is information that is not displayed by the colour composite in 
the leftmost panel of Figure 4-1. Thus, the CMA-prob results are clearly based on more 
information than what is displayed in the RGB representation in Figure 4-1. 
 

 

Figure 4-1 Part of an original NOAA-18 AVHRR GAC scene in satellite projection over the 
North American west coast (with Gulf of California and Baja California in the center) 
registered in ascending mode (i.e., North is down, South is up) from 26 January 2010. 
Left: Colour composite with AVHRR channel 1 (red), channel 2 (green) and channel 4 
(blue). Right: Corresponding CMA-prob Naïve cloud probabilities (as greyscale image 
with range 0-100 %).  
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Figure 4-2 Part of an original NOAA-18 AVHRR GAC scene in satellite projection over 

Spain and northern Africa registered in ascending mode (i.e., North is down, South is up) 
from 16 May 2007. Left: Colour composite with AVHRR channel 1 (red), channel 2 (green) 
and channel 4 (blue). Right: Corresponding CMA-prob Naïve cloud probabilities (as 
greyscale image with range 0-100 %). 

Figure 4-2 shows a NOAA-18 case including parts of the desert regions of Northern Africa. 
This example illustrates clearly how clouds and bright desert surfaces can be efficiently 
separated taking advantage of the full information content in all AVHRR channels. 
Especially, we notice that despite being over rather bright desert surfaces (i.e., surface 
reflectances in visible channels are here rather close to cloud reflectances) the resulting cloud 
probabilities are clearly at the zero level (black areas) for cloud free areas and close to 100 % 
(white areas) for cloudy areas. Notice again the high cloud probabilities for obviously rather 
thin cirrus cloud fields over Spain and the Mediterranean Sea. The most important 
information here comes mainly from AVHRR channels 3 and 5  which are not displayed in 
the colour composite image. The problem of using contextual (texture) information in 
applications like this results in high cloud probabilities on the sea side of the coast-lines (since 
texture features are only used over ocean surfaces). Consequently, also probabilistic 
approaches need a special coastal treatment which will be considered in the upcoming 
versions of CMA-prob. 
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Figure 4-3 Part of an original NOAA-17 AVHRR GAC scene in satellite projection over 

Greenland registered in descending mode (i.e., North is up, South is down) from 4 June 
2009. Left: Colour composite with AVHRR channel 1 (red), channel 2 (green) and channel 
4 (blue). Right: Corresponding CMA-prob Naïve cloud probabilities (as greyscale image 
with range 0-100 %). 

Finally, Figure 4-3 shows a NOAA-17 case over Greenland from 4 June 2009. This case 
clearly illustrates the strength of the Rnir_3a feature in Table 3-2. The colour composite 
shows how snow-covered surfaces and cloud features are hard to separate (if not using 
shadow effects) but taking into account also the information in AVHRR channel 3a makes 
this distinction very efficient in the CMA-prob image.    

4.2 Preliminary validation results 
The new CMA-prob results have been evaluated using CALIPSO cloud mask for the 99 
global orbits from the NOAA-18 satellite in the period 2006-2009 and results are shown 
inFigure 4-4. To realise this validation CMA-prob results were first converted into a binary 
cloud mask using a threshold value of 60 %. As has been explained previously, the training of 
CMA-prob from CALIPSO cloud masks included (despite special precautions) a small 
fraction of clouds not theoretically detectable in AVHRR data. Consequently, the realised 
CMA-prob probabilities are likely to be slightly too high. This motivates a higher threshold 
than 50 %. It was also shown by Karlsson et al. (2015) that the best validation results were 
found for a threshold close to 60 %.  
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 Results in Figure 4-4 are visualised using the same plotting method as in the study of 
Karlsson and Johansson (2013). This method plots results as a function of thresholded cloud 
optical thicknesses which means that all CALIOP-detected clouds below the shown cloud 
optical thickness on the x-axis are treated as being cloud-free (i.e., thinner clouds filtered out). 
Consequently, original unfiltered results are seen for a cloud optical thickness value of 0.0.  
 

 
Figure 4-4 Hitrate and Kuipers Skill Scores plotted as a function of filtered CALIPSO-

CALIOP cloud optical thickness (explained in text). Results for CMA-prob are compared 
to results of the official PPS version 2014 Patch 1 ([RD 1]). All results were derived for 99 
NOAA-18 orbits in the period 2006-2009. 

 
Results in Figure 4-4clearly shows (e.g. at optical thickness value of 0.2 assumed to represent 
the lower detectability limit) that CMA-prob results are clearly comparable to the official PPS 
2014 patch 1 results. This is very encouraging considering that PPS 2014 uses a rather 
complex setup of image features and threshold sequences adapted to specific conditions. 
Despite the use of a rather limited set of image features and conditions, CMA-prob is still 
capable of producing comparable results to PPS 2014. 
 
Results from a similar validation of corresponding results from the 385 NOAA-17 orbits are 
shown inFigure 4-5. Here we can see that the official PPS method is still significantly better, 
especially as regards the separation of cloudy and clear cases (best reflected in the Kuipers’ 
score). However, the deviation between the methods is to a large extent explained by special 
precautions taken in the official PPS method for very cold conditions over Greenland and 
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Antarctica when the  3.7 µm channel risk to become saturated due to poor radiometric 
resolution. The official PPS 2014 patch 1 method stops using brightness temperatures in that 
channel for surface temperatures below 235 K due to these problems. This is not done for 
CMA-prob and this degrades results significantly, especially for night-time (Polar night) 
conditions. However, similar actions or restrictions could also be applied for CMA-prob in 
future realisations in order to improve results. In any case, day-time results for CMA-prob 
applied to NOAA-17 data are still comparable with official PPS 2014 patch 1 results. 

 
Figure 4-5 Hitrate and Kuipers Skill Scores plotted as a function of filtered CALIPSO-

CALIOP cloud optical thickness (explained in text). Results for CMA-prob are compared 
to results of the official PPS version 2014 Patch 1 ([RD 1]). All results were derived for 
385 NOAA-17 orbits in the period 2006-2009. 

 
Validation results have still to be extended with results based on an independent dataset (i.e., 
which has not been used for training). However, this has been done for an earlier prototype of 
the method based on PPS version 2010 and actually being the basis for the study by Karlsson 
et. al., 2010. Here, results were also evaluated on 78 independent NOAA-18 and NOAA-19 
orbits in 2010 with very encouraging results.    
 

5 Limitations and areas for future improvements 
The CMA-prob method described in this document is the second prototype version based on 
dynamic threshold information from PPS version 2014 patch 1. The first version was 
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described in the paper by Karlsson et al. (2015) and was based on dynamic threshold 
information from PPS version 2010. Thus, it is clear that this method should be seen as an 
extension of the official PPS software and it cannot be run independently from PPS. 
Consequently, if continuing with this approach the method needs to be updated (new training) 
for every new release of the PPS method.  

The most prominent limitation of the current version of the method is that situations in 
twilight conditions are not treated separately as it is actually done in the official PPS scheme. 
Thus, training was made only for night-time and day-time conditions (separated by the solar 
zenith angle of 90 degrees) and the method has been implemented in the same manner. It is 
clear that results are therefore inferior to official PPS results in conditions near twilight. This 
will be taken care of in the next update of the method (linked to the planned PPS 2017 
release). 

Statistical methods are always limited by the amount of training data being used. It is clear 
from probability distributions shown in Section 3.7 that the current training dataset is not 
capable of providing very well-defined probability distributions. In that respect, it is very 
encouraging that results are still as good as being documented. However, it is very clear that 
an improved amount of training data would be beneficial for future versions of the method. 
Consequently, it is planned to extend the training material with considerably more data from 
CALIPSO in the period 2010 up to present date.  

One particularly critical part of the training of the method was the inclusion of data from 
morning satellites using the 1.6 µm channel. Here data from NOAA-17 was utilised and 
matched with CALIPSO. However, this is only possible at high latitudes. Thus, in the current 
method no training data has been achieved for lower latitudes and in particular over 
(sub-) tropical dry regions (deserts) where reflectivities in this channel are particularly high 
and often comparable to cloud reflectivities. Currently, statistics derived for snow-free land 
areas at high-latitude are also used for lower latitudes. This works surprisingly well but future 
efforts have to include ways of better characterising this image feature characteristics over 
low- and mid-latitudes. This can be done using other references than CALIPSO (e.g. MSG-
SEVIRI data). 
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7 Glossary 
ATBD Algorithm Theoretical Baseline Document 
AVHRR Advanced Very High Resolution Radiometer 
CALIOP Cloud-Aerosol Lidar with Orthogonal Polarization (CALIPSO) 
CALIPSO Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations 
CDOP Continuous Development and Operations Phase 
CLARA CM SAF cLoud, Albedo and surface RAdiation dataset 
CMA-prob Cloud Mask (probabilistic) 
CM SAF Satellite Application Facility on Climate Monitoring 
CPP Cloud Physical Properties 
DRI Delivery Readiness Inspection 
DWD Deutscher Wetterdienst (German MetService) 
ECMWF European Centre for Medium Range Forecast 
ECV Essential Climate Variable 
EPS European Polar System 

EUMETSAT European Organisation for the Exploitation 
of Meteorological Satellites 

FOV Field of view 
GAC Global Area Coverage (AVHRR) 
GCOS Global Climate Observing System 
IOP Initial Operations Phase 
ITCZ Inter-Tropical Convergence Zone 
KNMI Koninklijk Nederlands Meteorologisch Institut 
NASA National Aeronautics and Space Administration 
NDBC National Data Buoy Center 
NESDIS National Environmental Satellite, Data, and Information System 
NOAA National Oceanic & Atmospheric Administration 
NODC National Oceanographic Data Center 
NSIDC National Snow and Ice Data Center 
NWCSAF Satellite Application Facility for Nowcasting  
NWP Numerical Weather Prediction 
PPS Polar Platform System 
PRD Product Requirement Document 
PUM Product User Manual 
RMIB Royal Meteorological Institute of Belgium 
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RMS Root Mean Square 
RSMAS Rosenstiel School of Marine and Atmospheric Science 
RSS Remote Sensing Systems 
SAF Satellite Application Facility 
SMHI Swedish Meteorological and Hydrological Institute 
SST Sea Surface Temperature 
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