Operational validation of IFS forecasts

Thomas Haiden

Evaluation Section, Forecast Department

Contents

- Predictability of cloudiness
- Regional patterns
- Spread-error relationship
- Arctic low cloud
- Requirements

IFS forecast skill relative to ERA-Interim

IFS forecast skill horizon (point forecasts)

IFS forecast skill horizon (point forecasts)

Regional patterns of forecast skill (SIS, normalized)

ENS verification: spread v error (SIS, normalized)

Monitoring cloud forecast skill using TRS

Using cloud fraction for stratifying radiation bias

Dependence of cloud fraction error on cloud top height

Low cloudiness errors in the Arctic

- Strongly affect surface longwave radiation → sea ice
- Typically under stably stratified conditions
- Mainly a winter problem, strongly dependent on temperature

ERA-Interim v CM SAF cloud fraction

Cloudiness and sea-ice

ERA-Interim Nov 2014 – Apr 2015

Low cloud cover

Sea ice concentration

Outlook / requirements

- Homogeneous dataset which is as near to real time as possible
- Estimates of systematic and non-systematic errors
- SIS useful to infer 'radiatively equivalent' cloud forecast skill
- TRS useful since more directly observed
- YOPP (2017-2019): cloud/radiation products for Arctic

Conclusions

- CM SAF operational datasets highly useful in forecast evaluation
- Provide forecast skill monitoring and error diagnostic
- Highlight regional problems associated with certain cloud regimes
- Additional focus due to YOPP: cloudiness in the Arctic