Evaluation of Clouds and Radiation in a High- Resolution Climate Model using CMSAF-Information

Kwinten Van Weverberg¹, Erwan Brisson², Martin Stengel³, Matthias Demuzere⁴ and Nicole van Lipzig⁴

CMSAF User Workshop Grainau, 10 March 2014

¹TECLIM, UCLouvain, Louvain-la-Neuve, Belgium (now at Met Office, Exeter, UK)

²Goethe University Frankfurt, Germany

³Deutsche Wetterdienst, Frankfurt, Germany

⁴KULeuven, Leuven, Belgium

kwinten.vanweverberg@uclouvain.be

Uncertainty in Climate Models

Bias in global cloud cover against observations (ISCCP)

Uncertainty in Climate Models

Bias in global cloud cover against observations (ISCCP)

Severe underestimation of cloudiness in global models

Klein et al. 2013

Does Higher Resolution Help?

Does Higher Resolution Help?

10-year High-Resolution Climate Simulation

- Cosmo CLM (CCLM) model
- Limited Area (500² km²)
- High Resolution (Δx ~ 3km) 50°N
- Run for 2000-2010

- Three nesting levels
- No parameterization of convection

Evaluation – ISCCP approach

- Focus on Clouds and Radiation
- Using CMSAF data from 2004-2010
- Hourly CMSAF COT, CTP and TOA regridded to CCLM grid

ISCCP classification approach:9 cloud classes based on COT and CTP

Top-of-the-Atmosphere Radiation

Histograms of summer TOA radiation fields in CCLM and CMSAF (7 years of data)

→ Mean TOA radiation is well captured, but CCLM is too binary in the shortwave

ISCCP Cloud Classes

Mean summer cloud fraction in CMSAF and CCLM for all 9 ISCCP cloud classes

→ Huge underestimation of low and mid-level clouds

ISCCP Cloud Classes

Bias in mean summer TOA SW net radiation (W/m²) by all 9 cloud classes (CCLM-CMSAF)

... lack of clouds compensated by too reflective clouds!

Overall Top of the Atmosphere radiation is well captured

Important to get the overall radiation bias right

- Overall Top of the Atmosphere radiation is well captured Important to get the overall radiation bias right
- Huge biases in cloud cover (similar to global models!)
 Too few thin low and mid-level clouds, well captured thick high clouds

- Overall Top of the Atmosphere radiation is well captured Important to get the overall radiation bias right
- Huge biases in cloud cover (similar to global models!)
 Too few thin low and mid-level clouds, well captured thick high clouds
- Biases in cloud cover are compensated by too reflective clouds
 Too much shortwave radiation is backscattered by low and mid-level clouds
 Hence the well captured overall TOA cloud properties

- Overall Top of the Atmosphere radiation is well captured Important to get the overall radiation bias right
- Huge biases in cloud cover (similar to global models!)
 Too few thin low and mid-level clouds, well captured thick high clouds
- Biases in cloud cover are compensated by too reflective clouds
 Too much shortwave radiation is backscattered by low and mid-level clouds
 Hence the well captured overall TOA cloud properties
- → Long-term and high-resolution satellite data are indispensable to measure progress in climate models!

