

# Chasing Clouds? How satellite observations help pin down the most evasive climate constituents

Ralf Bennartz

EES, Vanderbilt University and SSEC, University of Wisconsin – Madison

#### Outline

- Why are clouds important?
- What can satellite observations contribute?
  - Monitoring climate
  - Understanding climate processes
- Challenges

# Clouds are the single-most important factor modulating climate sensitivity.....

... and we know very little about forcings and feedbacks



#### 21 climate models- one scenario



#### Outline

- Why are clouds important?
- What can satellite observations contribute?
  - Monitoring climate
  - Understanding climate processes
- Challenges

#### Outline

- Why are clouds important?
- What can satellite observations contribute?
  - Monitoring climate
  - Understanding climate processes
- Challenges

### **Data Record**



- SSM/I, SSMIS
   Morning/Evening
   Coverage since 1987
- TRMM/GPM crisscrossing in LEXT since 1997 resp 2014
- AMSR-E/AMSR-2 13:30 LEXT
- MWI on EUMETSAT/ EPS-SG early afternoon orbit

GPM was launched successfully on:

Thu, 27 Feb 2014 18:38:33 UTC



### **Data Record**



- SSM/I, SSMIS
   Morning/Evening
   Coverage since 1987
- TRMM/GPM crisscrossing in LEXT since 1997 resp 2014
- AMSR-E/AMSR-2 13:30 LEXT
- MWI on EUMETSAT/ EPS-SG early afternoon orbit

## MW cloud liquid water path climatology

- Based on SSM/I since 1987, AMSR-E, and TMI
- Monthly diurnal mean liquid water path.
   Climatological diurnal cycle
- Various limitations for high LWP (due to presence of rain), slight biases for low LWP.
- Ongoing NASA Measures project (2013-2018)
- CM-SAF leading European efforts (HOAPS)
- Internationally coordinated via SCOPE-CM

## MW: Principle of retrieval



- Use 2 channels and polarization difference to estimate WVP, LWP
- Also affected by rain water
- Separation of RWP/LWP critical.

## The diurnal cycle of LWP



Long-term satellite studies of LWP must account for the diurnal cycle. Otherwise, satellite drifts will lead to an aliasing of the diurnal cycle onto trends of LWP.

#### Liquid water path, observations versus IPCC AR-5 (CMIP-5)



## Ice water path



(Eliasson et al, 2011)

#### **Outline**

- Why are clouds important?
- What can satellite observations contribute?
  - Monitoring climate
  - Understanding climate processes
- Challenges

#### **Outline**

- Why are clouds important?
- What can satellite observations contribute?
  - Monitoring climate
  - Understanding climate processes
- Challenges

#### Biomass burning aerosol and 1st indirect aerosol effect



#### Lidar observations of aerosols over clouds









#### Lidar observations of aerosols over clouds





### Diurnal cycle of clouds from SEVIRI





#### Diurnal cycle of clouds from SEVIRI





# Convective activity over Africa and the tropical Atlantic inferred from 20 years of MVIRI satellite observations

• 20 years, hourly 0° MVIRI observations 1986-2005



(Bennartz and Schroeder, J. Climate, 2011)

#### General patterns for long lived convection





- Tracks for all events that lasted more than 2 days
- Clear separation
   between event
   triggered by AEJ (land)
   and surface
   convergence (ocean)
- Total convective areas strongly correlated with Sahel rainfall anomaly



#### G. Stephens

## CloudSat

#### Strengths of CloudSat:

- Active sensor
- Excellent sensitivity
- Near-global coverage
- Coincident measurements from other A-Train sensors





#### **Challenges:**

- Complex relationship between reflectivity and snowfall rate/IWC
- Rain/snow discrimination
- Sampling
- Ground Clutter

#### T. L'Ecuyer





#### **EarthCARE**



## Cloud Retrieval Evaluation Workshop-4 (CREW-4)



Image: Courtesy and Copyright by Alexander Riehn, Hotel am Badersee, Grainau

#### 4-7 March 2014, Grainau, Germany, Europe

Organized by Deutscher Wetterdienst. Financially supported by EUMETSAT, the European Space Agency through the ESA Cloud CCI project and Deutscher Wetterdienst

#### **Program Committee**

Bryan Baum (co-chair), Rob Roebeling (co-chair), Ralf Bennartz, Ulrich Hamann, Andrew Heidinger, Jan Fokke Meirink, Martin Stengel, Andi Walther, Phill Watts, and Anke Thoss

## **Active Sensors**

- CREW recognizes the value of space-borne active instruments (lidar/radar) for process studies and climate research.
- In addition, these instruments provide a validation reference for various passive instruments.
- There is concern about data continuity beyond EarthCare.

### Challenges

- Legacy: If we want to observe climate, we need to have long-term data records.
- Transparency: We need to keep track of what is being done in each processing step. From calibration to level 3 gridding.
- Dynamics: Move away from static datasets. Need to be able to re-process entire time-series.
- Active sensors become increasingly important for climate research and process studies. Data continuity beyond EarthCare is critical.