Quantifying the uncertainty and ensuing spurious trends in level-3 AVHRR-based cloud climate data records

Jędrzej (Jed) Bojanowski and Jan Musiał

Remote Sensing Centre, Institute of Geodesy and Cartography, Warsaw, Poland

This work was supported by the National Science Centre, Poland under the POLONEZ grant No 2015/19/P/ST10/03990 that received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 665778.
Orbital drift & overlapping satellites

L2 → L3 aggregation
- Orbital drift
- Changing number of observations
- AMs / PMs separately?
- Overlapping satellites

(Devasthale et al, 2012)
Objective

Dissect effects on performance and trends in L3 CFC data:

• of **orbital drift** separately for each NOAA/MetOp satellite and each node

• of **diurnal cycle sampling** by changing number of satellites in orbit and their different time of image acquisition
Data & methods

NOAA/MetOp AVHRR acquisition times
- AVHRR per-pixel acquisition times based on CM SAF CLARA-A2
 - 1982-2015 (NOAA-7 to MetOp B)
 - Aggregated to 0.75 degree by a circular median

Reference CFC data with resolved diurnal cycle
- The CM SAF ClOud Fractional Cover dataset from METeosat First and Second Generation - Edition 1 (COMET)
 - Bayesian-based CFC for each 0.05 deg pixel → aggregated to 0.75 deg
 - Mean monthly diurnal cycle (1 hour resolution) smoothed with splines
 - Missing years (1982-1990) were replaced by 2007-2015
 - Daily diurnal cycle assumed stable for each day during a month

- No AVHRR-derived CFC used
- COMET retrieval error not relevant
COMET CFC diurnal cycle
Mean bias NOAA-PM
Bias-corrected RMSE, NOAA-PM
False trends, NOAA-PM
AVHRR CDR bias

CLARA CDR observed trends
Temporal stability

- GCOS-200: 1%/dec temporal stability

Trend of bias: -0.42% per decade ($p < 0.05$)

> 6 obs per day
Summary & outlook

- Orbital drift and sampling errors: ±10% bias, <8% bcRMSE
- False trends: ±6% per decade (±1 for merged satellites, -0.42 averaged over Met disc)
- Without diurnal cycle correction, L3 data before 2003 don’t comply with GCOS requirements

 - Aggregated PM-satellites reveal lower false trend than AMs
 - No big difference between overlapping and non-overlapping satellites aggregation
 - Low correlation between false and observed trends… (why?)

Outlook:

- Global analysis using ERA-5 as a reference
- Comparison of correction methods: Foster and Heidinger, 2013, rotated empirical orthogonal function (EOF, Devasthale et al. 2012), singular spectrum analysis (SSA)
- Similar study for cloud properties (e.g. based on CMSAF CLAAS as a reference)
Mean bias NOAA-AM

Mean bias error (GFC[%])
Bias-corrected RMSE, NOAA-AM
False trends by NOAA & node

ascending

descending

ascending + descending
Bias-corrected RMSE, AVHRR CDR