

ESA Vision for EO

Taking the Pulse of our Planet

ESA-Developed Earth Observation Missions

25 under development
15 in operation

ESA-Developed Earth Observation Missions

25 under development
15 in operation

Science: Earth Explorers

Earth Explorer 9 – Two Candidates

Mission selection 2019; launch around 2025

FORUM

Far-infrared Outgoing Radiation Understanding and Monitoring

Benchmark measurements will improve our understanding of the greenhouse effect and contribute to climate change assessments accuracy

SKIM

Sea-surface Kinematics

Multiscale monitoring

Will carry novel wide-swath scanning multibeam radar altimeter to measure ocean-surface currents with Doppler technique

Earth Explorer 10 – Three Candidates

STEREOID

Bistatic SAR as passive followers of Sentinel-1 Two <500kg spacecraft

Applications

- Cryosphere
- Oceanography
- Geosphere

Daedalus

Explore mesosphere, lower thermosphere & lonosphere

Four cubesats at 120 km altitude

Focus on temperature, heating processes & composition structure

G-CLASS

Science on daily water cycle

Geostationary C-band SAR

Benefits for weather forecasting, hydrology, mountain cryosphere

Doppler Wind Lidar:

 Operated in the UV, measuring winds in cloud free atmosphere, in optically thin cloud/aerosol layers, and on top of optically thick clouds

Orbit:

- Sun synchronous, 6 am/pm local time, 320 km altitude
- 7 day repeat cycle, 111 orbits per week

Products:

<u>Level-2A</u>: backscatter and extinction coeffs => cloud/aerosol vertical structure and properties

<u>Level-2B</u>: Profiles of single component wind vectors (~u)

- 24 layers: surface to 30km
- horiz. res. 85 km (Rayleigh) and 10 km (Mie)

Level-2C: ECMWF-assimilated wind vectors

Aeolus observed molecular (left) and particle/cloud (right) Level 2B winds

Courtesy Michael Rennie, ECMWF

ESA-Developed Earth Observation Missions

Satellites 25 under development 2015 2010 15 in operation Meteosat 11 2020 Proba-V 4 2025 Sentinel-2C EarthCARE Sentinel-3D Sentinel-5B MetOp-SG-A2 2030 eesa Copernicus - Conversion Meteorology Science **EUMETSAT**

Copernicus – Sentinel Status

Radar

A 3 Apr. 2014

B 25 Apr. 2016

C 2022/23

D > 2022/23

S-2

High Res. Optical

A 23 Jun. 2015

B 6 Mar. 2017

C 2022/23

D > 2022/23

S-3

Medium Res. Optical & Altimetry

16 Feb. 2016

B 25 Apr. <u>2018</u>

C 2023

D > 2023

S-4

Atmospheric Chemistry (GEO)

A 2022

B 2027

S-5P

Atmospheric Chemistry (LEO)

13 Oct. 2017

S-5

Atmospheric Chemistry (LEO)

A 2021

B 2027

C > 2027

S-6

Altimetry

A 2020

B 2025

Copernicus Sentinel-5P

Sentinel-5P results

Transboundary Carbon Monoxide

Total Ozone columns

Copyright: Contains modified Copernicus Sentinel data (2017-2019) / processed by SRON and KNMI

Copernicus: Global European Leadership in EO

> 215.000

registered users

= tip of the iceberg

6 operational services

Land

Atmosphere

Ocean

Climate

Disaster

Security

TB satellite data distributed per day

full, free & open data policy

7 satellites flying

preparing Copernicus 2.0

Copernicus 2.0 – New Monitoring Missions

Anthropogenic CO₂ Mon. Mission

Causes of Climate Change

Land Surface Temperature Mission

Agriculture & Water Productivity

CRISTAL – Polar Ice & Snow Topography

Effects of Climate Change

CHIME – Hyperspectral Imaging Mission

Food Security, Soil, Biodiversity

CIMR – Passive Microwave Radiometer

Sea: Surface Temp. & Ice Concentration

L-band SAR Mission

Vegetation & Ground Motion & Moisture

Essential Climate Variables (ECVs)

United Nations

Framework Convention on Climate Change

Climate Modelling User Group (CMUG)

Hadley Centre, DLR, ECMWF, BSC, Meteo France, MPI-Met, IPSL, SMHI

Provides feedback to CCI projects on:

- Climate science user requirements
- ECV product specification e.g. product uncertainties
- Independent assessments of using CCI data in modelling studies: verification, assimilation, etc.
- Cross-ECV consistency

Exploiting the satellite archive – Soil Moisture ECV

Climate Change Initiative

Atmospheric Carbon Dioxide (ppm)

Sea Ice Concentration

Land Cover & Sea Surface Temperature time series

9,000 Gt glacier ice loss since 1961

Antarctic Ice Sheet Contribution to Global Sea Level

Global Mean Sea Level Budget

CCI achievements to date

13 ECVs transferred to Copernicus

Open data

133 terabytes

100+
datasets

4.2 million files

640
Peer-reviewed articles

1PCC AR5

28 Contributing authors

15 Papers, cited 60 times

