

Typing of synoptic situations

- Long tradition in Czechia
- Started in 1946 (on daily basis)
- For years 1946-1990 for the whole Czechoslovakia
- Since 1991 sepparately for Czechia and Slovakia
- The typing is prepared and discussed with great attention in April of the following year

Typing of synoptic situations

Typing of synoptic situations

- What's taken into account?
 - surface and upper level circulation
 - frontal zone
 - pressure field patterns
 - air masses
- All days are typed ..
- ... but sometimes it's not easy ...

	GWL_NR	abbreviation	description
	1	А	Anticyclone over CE
7	2	Ap1	Travelling anticyclone (type1)
70	3	Ap2	Travelling anticyclone (type2)
	4	Ap3	Travelling anticyclone (type3)
	5	Ap4	Travelling anticyclone (type4)
	6	В	Through over CE
1	7	Вр	Trough advancing across CE
	8	С	Cyclone over CE
IJ	9	Cv	Upper level cyclone
7	10	Ea	Eastern anticyclonic
	11	Ec	Eastern cyclonic
	12	Nc	Northern cyclonic
	13	NEa	Northeastern anticyclonic
	14	NEc	Northeastern cyclonic
	15	NWa	Northwestern anticyclonic
	16	NWc	Northwestern cyclonic
	17	Sa	Southern anticyclonic
	18	SEa	Southeastern anticyclonic
	19	SEc	Southern cyclonic
	20	SWa	Southwestern anticyclonic
	21	SWc1	Southwestern cyclonic (type 1)
0-	22	SWc2	Southwestern cyclonic (type 2)
	23	SWc3	Southwestern cyclonic (type 3)
	24	Vfz	Frontal zone entrance
	25	Wa	Western anticyclonic
34.3	26	Wal	Western anticyclonic (summer type)
	27	Wc	Western cyclonic
	28	Wcs	Western cyclonic (with southerly trajectory)

28 types

Example: type A

Sun,210CT1962 00Z 500 hPa Geopotential (gpdm) und Bodendruck (hPa)

Daten: Reanalysis des NCEP Wetterzentrale Karlsruhe

Top Karten: http://www.wetterzentrale.de/topkarten/

11.06.2019

Typing of synoptic situations - why?

- Forecast purposes (typical weather for the circulation type)
- Long-term forecast based on analogues approach
- Dynamic climatology for different purposes
- Mostly, for analyses/forecasts of temperature and precipation parameters

GWL and CMSAF motivation

 No analyses of cloudiness / sunshine duration (radiation) for this typing has been done so far

 What are the typical spatial fields for different types / groups of types?

Are there any temporal changes/trends?

CMSAF data

- cloudiness CFC (daily means):
 - COMET (res. 0.05° x 0.05°), 1991-2015
 - CLARA (res. 0.25° x 0.25°) 1983-2015 (for trend analysis)
- radiation SIS (daily means)
 - SARAH (res. 0.05° x 0.05°), 1983-2015
- sunshine duration SDU (daily sums)
 - SARAH (res. 0.05° x 0.05°), 1983-2015

Global radiation (SIS, W/m²)

When we have highest SIS (annual mean)?

Global radiation (SIS, W/m²)

When we have lowest SIS (annual mean)?

Cloudiness (CFC, %)

When we have most / least cloudiness (annual mean)?

Cloudiness (CFC, %)

Summer season (May-August)

000				
100	GWL_NR	abbreviation	description	
	1	А	Anticyclone over CE	
	2	Ap1	Travelling anticyclone (type1)	
	3	Ap2	Travelling anticyclone (type2)	
	4	Ap3	Travelling anticyclone (type3)	
H12 (2)	5	Ap4	Travelling anticyclone (type4)	
-80	6	В	Through over CE	
	7	Вр	Trough advancing across CE	
	8	C	Cyclone over CE	
	9	Cv	Upper level cyclone	
	10	Ea	Eastern anticyclonic	
- 60	11	Ec	Eastern cyclonic	
7.00	12	Nc	Northern cyclonic	
	13	NEa	Northeastern anticyclonic	
	14	NEc	Northeastern cyclonic	
	15	NWa	Northwestern anticyclonic	
	16	NWc	Northwestern cyclonic	
- 40	17	Sa	Southern anticyclonic	
	18	SEa	Southeastern anticyclonic	
	19	SEc	Southern cyclonic	
	20	SWa	Southwestern anticyclonic	
	21	SWc1	Southwestern cyclonic (type 1)	
	22	SWc2	Southwestern cyclonic (type 2)	
- 20	23	SWc3	Southwestern cyclonic (type 3)	
	24	Vfz	Frontal zone entrance	
	25	Wa	Western anticyclonic	
	26	Wal	Western anticyclonic (summer type)	
	27	Wc	Western cyclonic	
L,	28	Wcs	Western cyclonic (with southerly trajectory	

Sunshine duration (SDU, h)

Summer season (May-August)

Global radiation (SIS, W/m²)

Summer season (May-August)

Cloudiness (CFC, %)

Winter season (November-February)

Sunshine duration (SDU, h)

Winter season (November-February)

Global radiation (SIS, W/m²)

Winter season (November-February)

Groups of situations

 days with advection of warm air and stable/inverse stratification in the lower troposphere in winter

Groups of situations

days with advection of warm air and stable/inverse stratification in the lower troposphere in winter

Groups of situations

situations with southwesterly air flow at higher levels

Long term changes

CFC during "cloudy" types, JJA

Long term changes

CFC during "sunny" types, JJA

Long term changes

SDU during "sunny" types, March

Conclusion

- CMSAF data provide very useful data to complete our knowledge about "typical" weather under given circulation type in the Czech Republic
- Other modification (temporal, parameters) possible/planned (diploma thesis)
- Comparison with "objective" classification planned

... special thanks to Christine Träger and Jörg Trentmann!

Thank you for your attention