UiT THE ARCTIC UNIVERSITY OF NORWAY # CLARA-A2 dataset Improvements and shortcomings in high latitude regions Bilal Babar Researcher Energy and Climate group University of Tromsø – The Arctic University of Norway #### **Outline** Part 1: Improvements of CLARA-A2 dataset Babar, B., Graversen, R., & Boström, T. (2018). Evaluating CM-SAF solar radiation CLARA-A1 and CLARA-A2 datasets in Scandinavia. Solar Energy, 170, 76-85. Part 2: Comparing CLARA-A2, SARAH-2 and ERA5 datasets Babar, B., Graversen, R., & Boström, T. (2019). Solar radiation estimation at high latitudes: Assessment of the CMSAF databases, ASR and ERA5. Solar Energy, 182, 397-411. Part 3: Improving CLARA-A2 dataset with machine learningn Babar, B., Luppino, T,L., Boström, T & Anfinsen, S. (under review). Random forest regression for improved mapping of solar radiation at high latitudes. ## Area of investigation ## Part 1 From CLARA-A1 to CLARA-A2 - CLARA-A2 has smaller amount of missing values - The data points that were available in CLARA-A1 have improved accuracy - New data points have large errors ### Missing data in CLARA-A1 and CLARA-A2 ## Missing data in CLARA-A1 and CLARA-A2 #### INCREASE IN AVAILABILITY OF CLARA A2 DATA # Part 2 Comparing CLARA-A2 with SARAH-2 and ERA5 - 31 locations and 16 years of data were analysed. - The analysis was performed by dividing locations into 4 distinct groups, i.e. above 65N, below 65N, coastal and inland. - A sky-stratification and a seasonal error analysis was performed to assess the datasets. ## **Accuracy of the datasets** | | RMSD(Wm ⁻²) | | | M | AD(Wm | ²) | MBD(Wm ⁻²) | | | | |---------------|-------------------------|---------------|----------------|---------------|---------------|----------------|------------------------|----------------|--------------|--| | | CLARA | SARAH | ERA5 | CLARA | SARAH | ERA5 | CLARA | SARAH | ERA5 | | | | | | | | | | | | | | | | 8.6 | 7.7 | 10.2 | 5.6 | 5.0 | 6.8 | -1.1 | -1.9 | 4.1 | | | All Sites | (18.6) | (17.8) | (27.0) | (13.1) | (11.8) | (17.4) | (- 1.6) | (-2.4) | (4.5) | | | Above
65°N | 10.0
(18.8) | - | 12.9
(29.6) | 5.7
(11.7) | - | 8.5
(17.5) | -2.4
(-2.9) | - | 6.3
(6.7) | | | Below
65°N | 8.4
(18.6) | 7.7
(17.8) | 9.8
(26.7) | 5.6
(13.3) | 5.0
(11.8) | 6.6
(17.4) | -1.0
(-1.4) | -1.9
(-2.4) | 3.9
(4.2) | | | Coastal | 7.8
(17.6) | 7.1
(16.5) | 10.4
(27.1) | 4.9
(12.2) | 4.5
(11.0) | 6.8
(17.0) | -0.7
(-1.1) | -1.6
(-1.9) | 4.3
(4.7) | | | Inland | 9.1
(19.4) | 8.0
(18.5) | 10.1
(27.0) | 6.1
(13.8) | 5.2
(12.2) | 6.8
(17.7) | -1.5
(-1.9) | -2.1
(-2.7) | 4.0
(4.2) | | ## **Sky Stratification analysis** | CLARA | RMSD (Wm ⁻²) | M BD (W m ⁻²) | |-------------------------|--------------------------|---------------------------| | Clear-sky | 21.5 | -3.9 | | Intermediate-cloudiness | 22.1 | -3.2 | | Overcast | 12.9 | -0.1 | #### **SARAH** Ground (Wm⁻²) | RM SD (W m ⁻²) | M BD (W m ⁻²) | |----------------------------|---------------------------| | 20.4 | -5.5 | | 20.1 | -2.9 | | 13.2 | 4.5 | | | 20.4
20.1 | | 10 | | 7 € 200 | | | | | |------|----------------------------|---------|---|-------------------------|--------------------------|---------------------------| | 00 | | 45 (V | | ERA5 | RMSD (Wm ⁻²) | M BD (W m ⁻²) | | 00 - | | å ≝ 100 | | Clear-sky | 25.4 | -9.9 | | 50 | | 3 50 | | Intermediate-cloudiness | 28.4 | 8.7 | | - | 50 100 150 200 250 | , | 20 40 60 80 100 120
Ground (Wm ⁻²) | Overcast | 29.6 | 15.3 | | | Ground (Wm ⁻²) | | | | | | # Part 3 Random forest regression on CLARA-A2 and ERA5 - CLARA-A2, ERA5, latitude, altitude, clear-sky indices and solar zenith angle as input - 20% data for training and 80% for testing - The model was trained on Norwegian locations and tested on Swedish locations ## **Error Analysis of Norwegian Locations** | | | RMSD (Wm | M | MAD (Wm ⁻²) | | | Bias (Wm ⁻²) | | | |----------------|---------------|----------------|---------------|-------------------------|---------------|---------------|--------------------------|--------------|----------------| | | CLARA | ERA5 | RFR | CLARA | ERA5 | RFR | CLARA | ERA5 | RFR | | NIBIO
sites | 8.6
(18.6) | 10.2
(27.0) | 6.6
(15.5) | 5.6
(13.1) | 6.8
(17.4) | 4.3
(10.1) | -1.1
(-1.6) | 4.1
(4.5) | -0.2
(0.0) | | Above
65°N | 9.6
(16.0) | 10.1
(26.3) | 6.5
(13.5) | 5.7
(11.7) | 8.5
(17.5) | 4.2
(8.1) | -2.4
(-2.9) | 6.3
(6.7) | -0.2
(0.4) | | Below
65°N | 9.7
(19.5) | 12.7
(26.8) | 8.0
(15.7) | 5.6
(13.3) | 6.6
(17.4) | 5.4
(10.4) | -1.0
(-1.4) | 3.9
(4.2) | 0.1 (-0.1) | | Coastal | 9.7
(16.7) | 10.1
(26.7) | 6.6
(16.2) | 4.9
(12.2) | 6.8
(17.0) | 4.3 (10.7) | -0.7
(-1.1) | 4.3
(4.7) | -0.2
(-0.3) | | Inland | 8.2
(20.8) | 11.2
(26.7) | 6.6
(14.5) | 6.1
(13.8) | 6.8
(17.7) | 4.6
(9.4) | -1.5
(-1.9) | 4.0
(4.2) | 0.1 (0.3) | ## **Error Analysis of Swedish locations** | | RMSD (Wm ⁻²) | | | M | AD (Wm | ⁻²) | Bias (Wm ⁻²) | | | |-----------|--------------------------|--------|----------------|--------|--------|-----------------|--------------------------|---------------|-----------------| | | CLARA | ERA5 | RFR | CLARA | ERA5 | RFR | CLARA | ERA5 | RFR | | Kiruna | 17.2 | 7.6 | 11.0 | 10.1 | 4.9 | 6.7 | -7.0 | -2.3 | -5.7 | | | (26.6) | (24.0) | (18.7) | (16.6) | (14.4) | (11.7) | (-8.2) | (-2.5) | (-5.8) | | Luleå | 10.6 | 10.4 | 5.5 | 6.9 | 6.6 | 3.7 | -4.4 | 5.1 | -2.1 | | | (24.4) | (25.1) | (17.4) | (14.9) | (15.3) | (10.8) | (-4.2) | (4.9) | (-2.1) | | Umeå | 8.3 | 7.1 | 5.3 | 6.1 | 4.4 | 3.7 | -3.2 | 2.0 | -2.4 | | | (16.4) | (23.0) | (13.2) | (11.5) | (14.2) | (8.9) | (-3.5) | (2.1) | (-2.3) | | Stockhol | 6.8 | 7.0 | 5.9 | 5.1 | 4.8 | 4.2 | 2.6 | 3.1 | 3.7 | | m | (16.4) | (23.6) | (14.6) | (11.5) | (15.7) | (9.8) | (2.5) | (3.1) | (3.6) | | Göteborg | 4.7 | 9.5 | 4.6 | 3.5 | 7.3 | 3.7 | 1.6 | 6.9 | 2.8 | | | (14.9) | (26.1) | (14.6) | (10.5) | (17.0) | (10.1) | (1.8) | (6.8) | (2.9) | | SMHI | 10.4 | 8.4 | 6.8 | 6.3 | 5.6 | 4.4 | -2.1 | 2.9 | -0.8 | | locations | (20.3) | (24.4) | (15.8) | (13.0) | (15.3) | (10.2) | (-2.3) | (2.9) | (-0.8) | #### Conclusion #### Advantages - CLARA cdr provides more accurate estimates in high latitude regions than other available datasets. - The dataset is improving with each iteration #### Shortcomings - Missing data points - Large errors on snow covers - Lower temporal resolution as compared to other datasets, e.g. ERA5