UiT

THE ARCTIC UNIVERSITY OF NORWAY

CLARA-A2 dataset Improvements and shortcomings in high latitude regions

Bilal Babar Researcher Energy and Climate group University of Tromsø – The Arctic University of Norway

Outline

Part 1: Improvements of CLARA-A2 dataset

Babar, B., Graversen, R., & Boström, T. (2018). Evaluating CM-SAF solar radiation CLARA-A1 and CLARA-A2 datasets in Scandinavia. Solar Energy, 170, 76-85.

Part 2: Comparing CLARA-A2, SARAH-2 and ERA5 datasets

Babar, B., Graversen, R., & Boström, T. (2019). Solar radiation estimation at high latitudes: Assessment of the CMSAF databases, ASR and ERA5. Solar Energy, 182, 397-411.

Part 3: Improving CLARA-A2 dataset with machine learningn

Babar, B., Luppino, T,L., Boström, T & Anfinsen, S. (under review). Random forest regression for improved mapping of solar radiation at high latitudes.

Area of investigation

Part 1 From CLARA-A1 to CLARA-A2

- CLARA-A2 has smaller amount of missing values
- The data points that were available in CLARA-A1 have improved accuracy
- New data points have large errors

Missing data in CLARA-A1 and CLARA-A2

Missing data in CLARA-A1 and CLARA-A2

INCREASE IN AVAILABILITY OF CLARA A2 DATA

Part 2 Comparing CLARA-A2 with SARAH-2 and ERA5

- 31 locations and 16 years of data were analysed.
- The analysis was performed by dividing locations into 4 distinct groups, i.e. above 65N, below 65N, coastal and inland.
- A sky-stratification and a seasonal error analysis was performed to assess the datasets.

Accuracy of the datasets

	RMSD(Wm ⁻²)			M	AD(Wm	²)	MBD(Wm ⁻²)			
	CLARA	SARAH	ERA5	CLARA	SARAH	ERA5	CLARA	SARAH	ERA5	
	8.6	7.7	10.2	5.6	5.0	6.8	-1.1	-1.9	4.1	
All Sites	(18.6)	(17.8)	(27.0)	(13.1)	(11.8)	(17.4)	(- 1.6)	(-2.4)	(4.5)	
Above 65°N	10.0 (18.8)	-	12.9 (29.6)	5.7 (11.7)	-	8.5 (17.5)	-2.4 (-2.9)	-	6.3 (6.7)	
Below 65°N	8.4 (18.6)	7.7 (17.8)	9.8 (26.7)	5.6 (13.3)	5.0 (11.8)	6.6 (17.4)	-1.0 (-1.4)	-1.9 (-2.4)	3.9 (4.2)	
Coastal	7.8 (17.6)	7.1 (16.5)	10.4 (27.1)	4.9 (12.2)	4.5 (11.0)	6.8 (17.0)	-0.7 (-1.1)	-1.6 (-1.9)	4.3 (4.7)	
Inland	9.1 (19.4)	8.0 (18.5)	10.1 (27.0)	6.1 (13.8)	5.2 (12.2)	6.8 (17.7)	-1.5 (-1.9)	-2.1 (-2.7)	4.0 (4.2)	

Sky Stratification analysis

CLARA	RMSD (Wm ⁻²)	M BD (W m ⁻²)
Clear-sky	21.5	-3.9
Intermediate-cloudiness	22.1	-3.2
Overcast	12.9	-0.1

SARAH

Ground (Wm⁻²)

RM SD (W m ⁻²)	M BD (W m ⁻²)
20.4	-5.5
20.1	-2.9
13.2	4.5
	20.4 20.1

10		7 € 200				
00		45 (V		ERA5	RMSD (Wm ⁻²)	M BD (W m ⁻²)
00 -		å ≝ 100		Clear-sky	25.4	-9.9
50		3 50		Intermediate-cloudiness	28.4	8.7
-	50 100 150 200 250	,	20 40 60 80 100 120 Ground (Wm ⁻²)	Overcast	29.6	15.3
	Ground (Wm ⁻²)					

Part 3 Random forest regression on CLARA-A2 and ERA5

- CLARA-A2, ERA5, latitude, altitude, clear-sky indices and solar zenith angle as input
- 20% data for training and 80% for testing
- The model was trained on Norwegian locations and tested on Swedish locations

Error Analysis of Norwegian Locations

		RMSD (Wm	M	MAD (Wm ⁻²)			Bias (Wm ⁻²)		
	CLARA	ERA5	RFR	CLARA	ERA5	RFR	CLARA	ERA5	RFR
NIBIO sites	8.6 (18.6)	10.2 (27.0)	6.6 (15.5)	5.6 (13.1)	6.8 (17.4)	4.3 (10.1)	-1.1 (-1.6)	4.1 (4.5)	-0.2 (0.0)
Above 65°N	9.6 (16.0)	10.1 (26.3)	6.5 (13.5)	5.7 (11.7)	8.5 (17.5)	4.2 (8.1)	-2.4 (-2.9)	6.3 (6.7)	-0.2 (0.4)
Below 65°N	9.7 (19.5)	12.7 (26.8)	8.0 (15.7)	5.6 (13.3)	6.6 (17.4)	5.4 (10.4)	-1.0 (-1.4)	3.9 (4.2)	0.1 (-0.1)
Coastal	9.7 (16.7)	10.1 (26.7)	6.6 (16.2)	4.9 (12.2)	6.8 (17.0)	4.3 (10.7)	-0.7 (-1.1)	4.3 (4.7)	-0.2 (-0.3)
Inland	8.2 (20.8)	11.2 (26.7)	6.6 (14.5)	6.1 (13.8)	6.8 (17.7)	4.6 (9.4)	-1.5 (-1.9)	4.0 (4.2)	0.1 (0.3)

Error Analysis of Swedish locations

	RMSD (Wm ⁻²)			M	AD (Wm	⁻²)	Bias (Wm ⁻²)		
	CLARA	ERA5	RFR	CLARA	ERA5	RFR	CLARA	ERA5	RFR
Kiruna	17.2	7.6	11.0	10.1	4.9	6.7	-7.0	-2.3	-5.7
	(26.6)	(24.0)	(18.7)	(16.6)	(14.4)	(11.7)	(-8.2)	(-2.5)	(-5.8)
Luleå	10.6	10.4	5.5	6.9	6.6	3.7	-4.4	5.1	-2.1
	(24.4)	(25.1)	(17.4)	(14.9)	(15.3)	(10.8)	(-4.2)	(4.9)	(-2.1)
Umeå	8.3	7.1	5.3	6.1	4.4	3.7	-3.2	2.0	-2.4
	(16.4)	(23.0)	(13.2)	(11.5)	(14.2)	(8.9)	(-3.5)	(2.1)	(-2.3)
Stockhol	6.8	7.0	5.9	5.1	4.8	4.2	2.6	3.1	3.7
m	(16.4)	(23.6)	(14.6)	(11.5)	(15.7)	(9.8)	(2.5)	(3.1)	(3.6)
Göteborg	4.7	9.5	4.6	3.5	7.3	3.7	1.6	6.9	2.8
	(14.9)	(26.1)	(14.6)	(10.5)	(17.0)	(10.1)	(1.8)	(6.8)	(2.9)
SMHI	10.4	8.4	6.8	6.3	5.6	4.4	-2.1	2.9	-0.8
locations	(20.3)	(24.4)	(15.8)	(13.0)	(15.3)	(10.2)	(-2.3)	(2.9)	(-0.8)

Conclusion

Advantages

- CLARA cdr provides more accurate estimates in high latitude regions than other available datasets.
- The dataset is improving with each iteration

Shortcomings

- Missing data points
- Large errors on snow covers
- Lower temporal resolution as compared to other datasets, e.g. ERA5