

Application of the CM-SAF SIS product for geostatistical modeling of solar erythemal UV radiation over Poland

Preliminary results

Jakub P. Walawender 1,2

- ¹ Satellite Remote Sensing Centre, Institute of Meteorology and Water Management National Research Institute (IMGW-PIB)
- ² Faculty of Biology and Earth Sciences, Jagiellonian University Krakow, Poland

Introduction

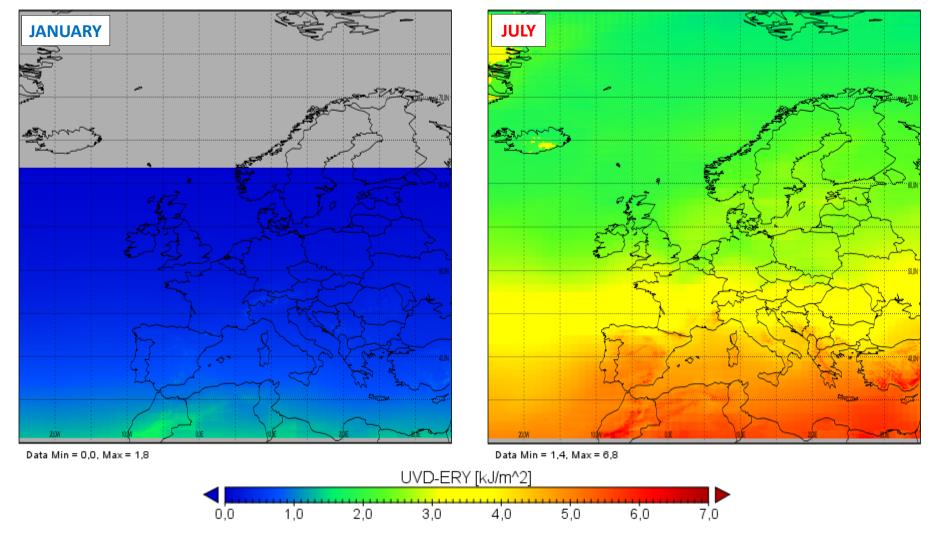
Title of my Ph.D. thesis:

Spatial distribution and temporal variability of biologically effective UV radiation (UV_{BIO}) over Poland

3 main activities:

- 1. Mapping UV_{BIO} climatologies
- 2. UV_{BIO} time series analysis for selected locations
- 3. Evaluating Influence of local environmental factors on personal UV_{BIO} exposure
- Activity 1-2: based on reconstructed hourly erythemal doses and satellite data (CM-SAF SIS, SRTM, NIWA/Bodeker TCO) \rightarrow gridded UV_{BIO} climatology (1986-2010)

COOPERATION WITH AEROLOGY CENTER, IMGW-PIB WARSAW (data reconstruction)

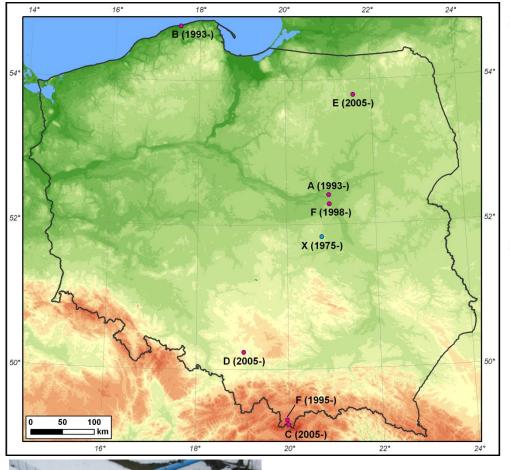

Activity 3: based on field measurements of erythemal UV radiation in summer seasons (2011-2013) $\rightarrow UV_{BIO}$ dosimetry

COOPERATION WITH DMI AND BBH IN COPENHAGEN (measurement instruments and strategy)

Mapping UV_{BIO} climatologies and time series analysis

- □ Creation of high-resolution (~1x1km) erythemally effective solar UV radiation maps over Poland at monthly time steps for the period 1986-2010 (25-years)
- Application of spatial prediction algorithm with the use of satellite data
- Evaluation of spatial pattern and temporal changes with particular emphasis on extreme values.
- Online dissemination of research outcome in the form of informative web service with e-atlas showing regions and periods with extremely high and low UV values over Poland and its potential impacts on human health

Monthly mean erythemal daily dose in Europe (1952-2002)



Source data: COST-726 – 'Long term changes and climatology of UV radiation over Europe'

Product algorithm: Jean Verdebout (JRC, Ispra, IT)

Spatial resolution: 0.05° × 0.05°

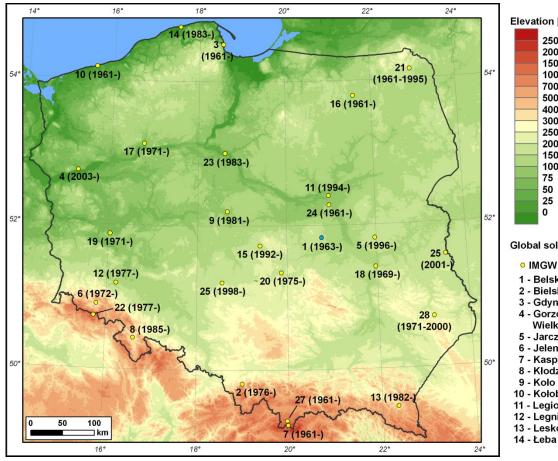
UV solar radiation measurements in Poland

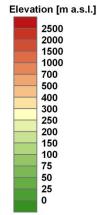
Elevation [m a.s.l.] 2500 2000 1500 1000 700 500 400 300 250 200 150 100 75 50 25

UV measurements:

- IMGW
- A Legionowo
- B Łeba
- C Kasprowy Wierch
- D Katowice
- E Mikołajki
- F Warszawa-Bielany
- G Zakopane
- IGF PAN
- X Belsk

Solar Light 501 UVB Biometer with broadband sensor [Legionowo]



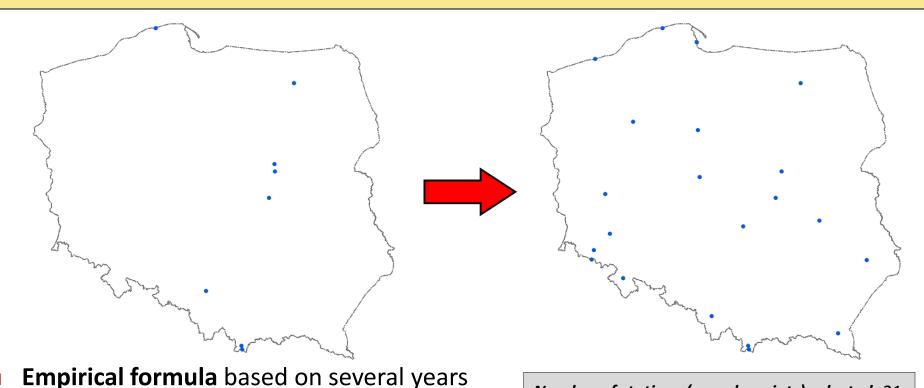

NILU-UV018 multispectral radiometer [Legionowo]

Optix UVEM-6C Multi sensor UVB radiometer [Zakopane]

Global solar radiation measurements in Poland

Kipp&Zonen CM6B Pyranometer [Legionowo]

Global solar radiation measurements:

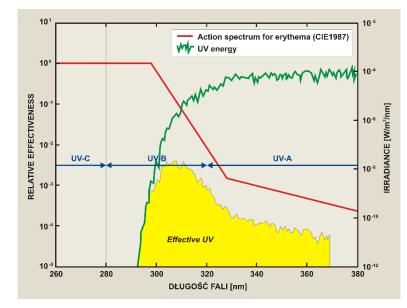

IMGWIGF PAN 15 - Łódź 1 - Belsk 2 - Bielsko-Biała 16 - Mikołajki 17 - Piła 3 - Gdynia 4 - Gorzów 18 - Puławy Wielkopolski 19 - Radzyń 5 - Jarczew 20 - Sulejów 6 - Jelenia Góra 21 - Suwałki 7 - Kasprowy Wierch 22 - Śnieżka 8 - Kłodzko 23 - Toruń 9 - Koło 24 - Warszawa 10 - Kołobrzeg -Bielany 11 - Legionowo 25 - Wieluń 12 - Legnica 26 - Włodawa 13 - Lesko 27 - Zakopane

28 - Zamość

Kipp&Zonen CM6B Pyranometer supplied with ventilation fan and heater [Zakopane]

UV reconstruction

- of concurrent GSR and UVR measurements in Legionowo, including auxiliary data:
 total ozone content, cloud cover, aerosol properties, solar zenith angle and snow cover
- Made it possible to reconstruct hourly UV irradiance for longer period and for more locations.


ACKNOWLEDGEMENT:
ALEKSANDER CURYŁO (AEROLOGY CENTRE, IMGW-PIB,)

Erythemally effective UV irradiance (UV_{ERY}):

Definition:

$$UV_{ERY} = \int_{200}^{400} F(\lambda)B(\lambda)d\lambda$$

- $F(\lambda)$ monochromatic UV irradiance at a given wavelength λ [W·m⁻²·nm⁻¹]
- $B(\lambda)$ action spectrum for erythema (CIE 1987) at a given wavelength λ

Relative effectiveness of the UV energy in reddening of the skin

Pre-processing workflow:

EMPIRICA RECONSTRUTION

HOURLY UV_{ERY} IRRADIANCE $[mW \cdot m^{-2}]$

AVERAGING OVER TIME

HOURLY UV_{FRY} DOSE [J·m⁻²]

MEAN MONTHLY UV_{ERY} DOSE [J·m⁻²]

Additional environmental (explanatory) variables

Static variables (constat over time, spatial resolution: 0.01 x 0.01 dg):

- □ CGIAR-CSI post-processed 3-arc second SRTM digital **elevation** database
- gridded latitude

Dynamic variables (changing over time, resolution: 0.05 x 0.05 dg):

- CM-SAF SIS (monthly mean solar surface irradiance), merged Meteosat MVIRI and SEVIRI datasets)
- NIWA/Bodeker-Scientific TCO (monthly mean total column ozone dataset combining measurements from a number of different satellite-based instruments (TOMS, GOME, SBUV)

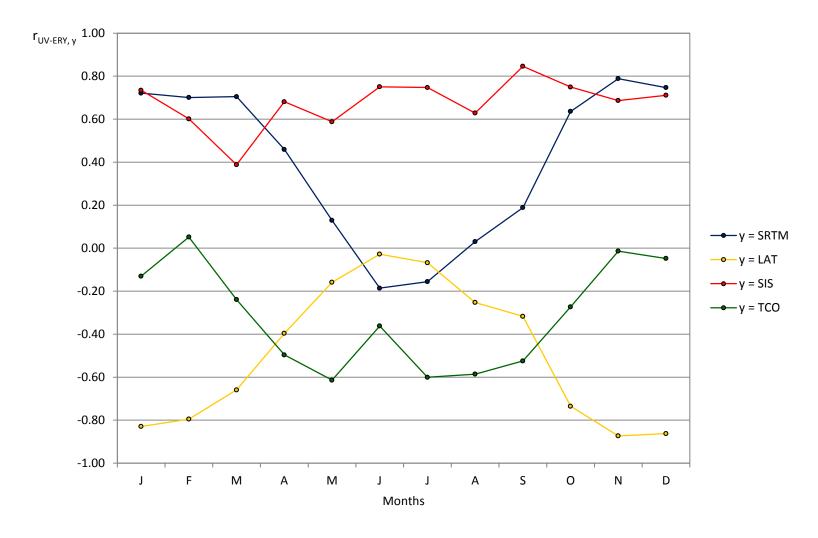
Spatial prediction procedure

Multiple Linear Regression Kriging (MLRK)

Multiple Linear Regression Analysis – explanation of deterministic part with the use of additional (explanatory) variables:

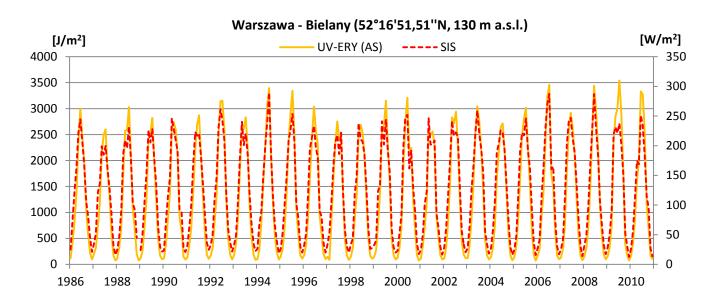
$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n + \varepsilon$$

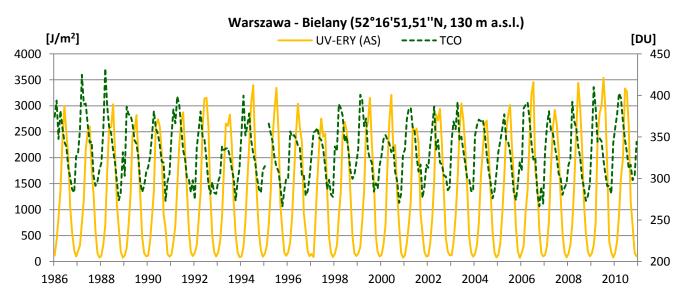
y – dependent variable, the variable we are trying to model (predict)

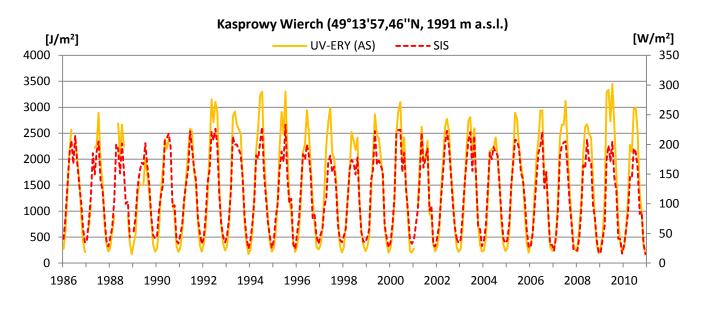

- X_1 , X_2 , X_n explanatory variables, strongly correlated with dependent variable, which can help to explain its spatial distribution
- β_0 , β_1 , β_n coefficients, reflecting the relationship and strength of each explanatory variable to dependent variable

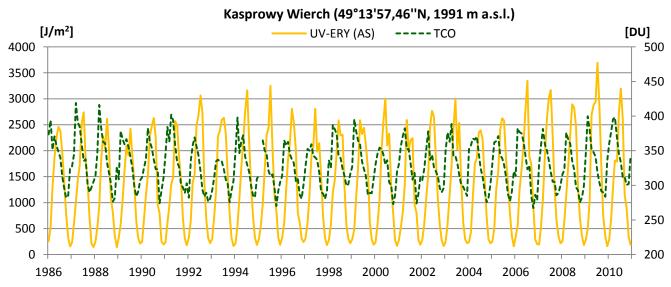
€ – the portion of the dependent variable that is not explained by the regression model, residual error

$$UV_{FRY} = \beta_0 + \beta_1 \times SRTM + \beta_2 \times LAT + \beta_3 \times SIS + \beta_4 \times TCO + \varepsilon$$

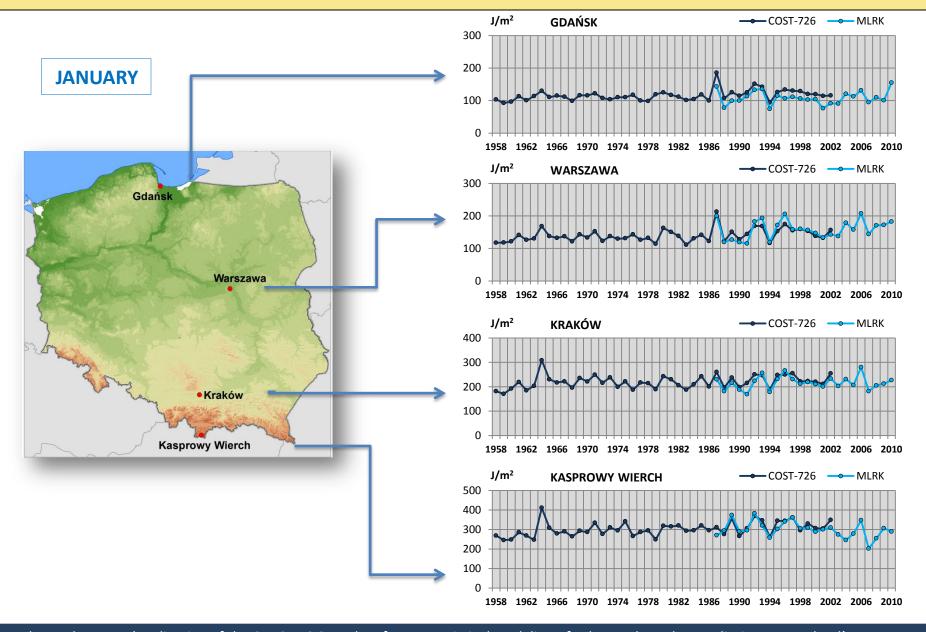

- \square **Spatial interpolation of the regression residuals (** ε **)** with Ordinary Kriging (OK)
- □ Accuracy assessment of the spatial prediction model Cross-validation(CV) \rightarrow leave-one-out routine \rightarrow evaluation of prediction errors,


Comparison of correlation coefficients

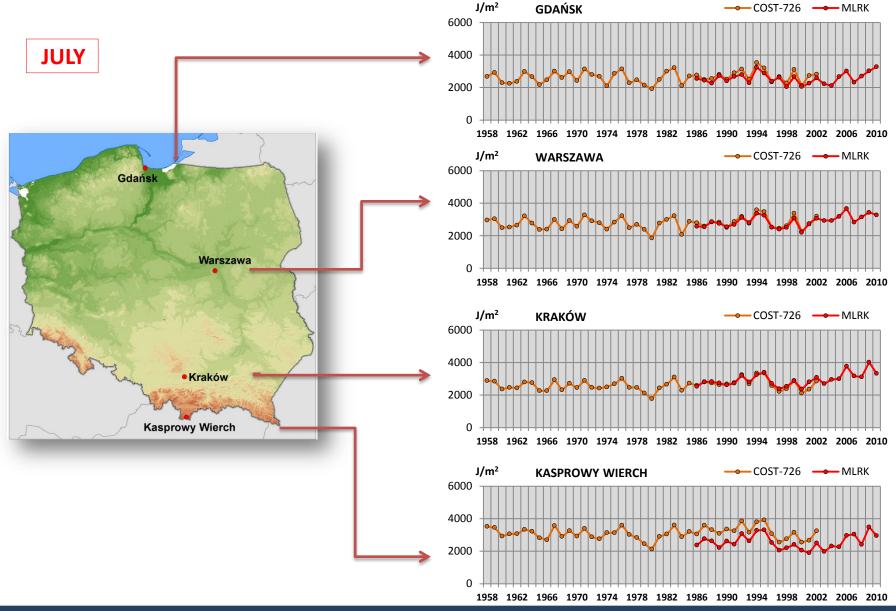

ALL 300 GRIDS INCLUDED!


Comparison of UV_{BIO}, SIS and TCO time series

Comparison of UV_{BIO}, SIS and TCO time series


Monthly mean UV_{ERY} daily dose (1986-2010)

JANUARY


JULY

Time series: COST-726 + MLRK

Time series: COST-726 + MLRK

Concluding remarks

- Empirical formula on the basis of global solar radiation measurements enabled reconstruction hourly solar erythemal UV radiation record for 21 locations all over Poland and a period 25-years (1986-2010)
- Presented spatial prediction model (MLRK) was successfully used to compute high resolution ($^{2}1x1km$) UV_{BIO} grids (spatially continuous satellite data as predictors!)
- GIS made it possible to integrate data from different sources, implement geostatistical formulas, automate processing of data (Model builder + Python scripting) and create output maps in appropriate digital cartography standards.
- Model limitations:
 - sparse UV monitoring network
 - assumption of linear relationship between elevation and UV data.
 - underestimation of UV levels on mountain tops (spatial resolution of grids)

Thank you for your attention

Jakub Walawender

e-mail: jakub.walawender@imgw.pl, jakub.walawender@uj.edu.pl