Routine verification of radiation and cloudiness forecasts at ECMWF using CM SAF data

Thomas Haiden

Thanks to: Jörg Trentmann (DWD)

Contents

- Cloudiness forecast skill
- Forecast verification using CM SAF
- Aerosol (MACC)
- ECMWF vs CMSAF vs BSRN
- Marine low cloudiness
- Continental low stratus
- Cloudiness forecast skill revisited

Forecast skill

Evolution of forecast skill

Total cloud cover

Downward solar radiation (daily means)

Latitudinal and seasonal scaling

Non-dimensional solar flux

Non-dimensional solar flux

= 1-SD(FC)/SD(OBS)

Non-dimensional solar flux

Gulf of Aden

Prognostic aerosol (MACC)

Brazil

Problem area Southern Ocean

Downward solar, Oct-Dec 2012, correlation

Latitudinal variation of total cloud cover

WCRP/GEWEX
Stubenrauch et al. (2012)

A-Train DARDAR-MASK Huang et al. (2012)

Solar downward vs TOA reflected

BSRN observations

Currently 50+ stations, number increasing

Subset with data available up to 2013

Estimated/expected errors

Solar downward at the surface

CM SAF target accuracy (MAE): 10 W m⁻² (monthly), 20 W m⁻² (daily)

BSRN target accuracy: 5 W m⁻²

CM SAF: Mueller et al (2009), Macke et al (2010), Posselt et al (2012)

BSRN: Ohmura et al (1998), Augustine et al (2005)

ECMWF vs CM SAF and BSRN

ECMWF vs CM SAF and BSRN

Tamanrasset, Algeria

Difference CM SAF vs BSRN due to aerosol, surface albedo?

Clear-sky: range of 40 W m⁻² spanned by datasets

ECMWF bias in TOA solar reflected

Stratocumulus

Why is Sc difficult to forecast?

- Small vertical extent
- Weak synoptic forcing
- Subtle interactions between radiation, microphysics, and turbulence
 - → Model errors partially 'hidden' by compensation effects

ECMWF bias in TOA solar reflected

Verification of cloud water content (ARM site)

Ahlgrimm and Forbes (2013)

Cu: too reflective

Sc: not reflective enough

ECMWF approach to reducing Cu/Sc errors

- More consistent test-parcel in PBL cloud scheme
- More nonlinear autoconversion/accretion
- Improved sub-cloud precipitation evaporation

Ahlgrimm and Forbes (2013)

ECMWF bias in TOA solar reflected

Downward solar, Oct-Dec 2012, correlation

Total cloud cover 06-18 UTC, Oct-Dec 2012, skill

Downward solar, Oct-Dec 2012, central alps

Downward solar, Oct-Dec 2012, correlation

Udine

Danube valley

Low stratus representation problem

Evolution of forecast skill

TOA reflected solar radiation

0.14 0.13 0.12 SDEV 0.11 0.1 OPER ERA-Interim 0.09 ro notice and rond round round round 201120 2012 201204 201201

N.Hem Extra-tropics

Tropics

Conclusions

- CM SAF very useful addition to forecast evaluation
- Systematic model errors: interpret with care
- Non-systematic errors: highlights 'problem areas'
- Issue of cloud misidentification over snow
- Near real-time aspect is important
- To-do list at ECMWF
 - Extend use of CM SAF products (e.g. cloud fraction, cloud top temperature)
 - Evaluate ENS forecast
 - Evaluate extended range and seasonal forecasts

TOA reflected solar, Jun-Aug 2012, correlation

TOA reflected solar, Oct-Dec 2012, correlation

Downward solar, Jun-Aug 2012, central alps

Sede Boquer, Israel

ECMWF: solar radiation overestimated on disturbed days

CM-SAF: solar radiation underestimated on disturbed days

ECMWF: SDEV similar to European stations

Downward solar, Jun-Aug 2012, correlation

