NWP model validation of shortwave radiation processes with satellite data

Frank Brenner
Deutscher Wetterdienst

CMSAF User Workshop

11.03.2014 Grainau

Verification with synop data

Verification with synop data

Motivation

Downward, shortwave, global radiation at the surface: CMSAF vs. COSMO DE

- Ground based pyranometer stations marked inside the plots

COSMO EU vs CMSAF

Model underestimates radiation. reason: too much aerosols

COSMO DE vs CMSAF

Could have many reasons, for example:

- too many clouds
- too thick clouds
- too much scattering / absorption inside the clouds
- combination of those above

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Verification with satellite data

Deutscher Wetterdienst Wetter und Klima aus einer Hand

ICON exp vs CMSAF, sw rad, surf

Incoming, shortwave, global radiation at the surface: CMSAF SIS vs. ICON experiment Very high values at the borders of the experiment are caused by nudging problems

ICON exp vs CMSAF, sw rad, toa

Outgoing, shortwave, global radiation, TOA: CMSAF TRS vs. ICON experiment

Deutscher Wetterdienst Wetter und Klima aus einer Hand

ICON exp vs CMSAF, lw rad, toa

Outgoing, longwave radiation, TOA: CMSAF OLR vs. ICON experiment

Diurnal cycle of radiation data: CMSAF SIS vs. ICON Experiment

Instantanious values!

Diurnal cycles

How to calculate the clear sky diurnal cycle:

- 1) 2 years of satellite data
- Pick clear sky radiation for every Pixel and every timestep
- Interpolate and store coefficients

SIS = F(day,hour,lat,lon)

Comparing temporal resolutions

Thank you for your attention

