

A comparison of data sources for creating a long-term time series of daily gridded solar radiation for Europe

Jędrzej S. Bojanowski Anton Vrieling, ITC Andrew K. Skidmore, ITC

U

Crop monitoring and yield forecasting

V

What limits the plant growth?

Climatic constraints to plant growth (from Nemani et al., Nature 2003)

Solar radiation determines the potential growth

Objective

To provide an approach for <u>accurate</u> estimation of <u>daily</u> surface solar radiation

- covering Europe with groundresolution ≤ 25 km
- ~30 years of past spatio-temporal distibution
- ▶ in near real-time (delay of 2-3 days)
- consistent in spite of different data sources (not as rigorous as for a climatology)

O

Solar radiation data sources

U

Measuring & modelling solar radiation

Replaced by Meteosat-derived coefficients

(Bojanowski et al., AgrForMet, 2013)

Coefficients typically determined for locations where the solar radiation is measured, and then interpolated

Data sources

	SIS	DSSF	ERA-Interim
Provider	Climate Monitoring SAF	Land Surface Analysis SAF	ECMWF
Satellite	Meteosat First Generation	Meteosat Second Generation	-
Sensor	MVIRI	SEVIRI	-
Time covered	1983-2005	2005-2011 /onwards	1983-2011
Status	dataset	operational, near real-time	dataset
Resolution	daily, 0.03 degree	daily, 5 km	daily (two 12h forecasts), 0.75 degree

Comparison with ground measurements

V

2005 (227 overlapping days)

'Annual' average Standard deviation

VS

LSA SAF DSSF

CM SAF SIS

CM SAF SIS vs LSA SAF DSSF

Grid-based intercomparison

Positive mean bias indicates that the estimate represented by a row has a higher value than estimate represented by a column.

Bojanowski et al. 2014 Solar Energy

U

Creating a long-term dataset (not a climatology)

Meteosat First and Second Generation data can be merged to create the **solar radiation dataset** covering years 1983-onwards

Done by Rebekka Posselt et al. (RSE, 2014)

- ▶ the two narrowband visible channels of the MSG were combined to simulate the MFG broadband visible channel → then MagicSol (Heliosat) algorithm was applied
- ► How this dataset can be prolonged in near real-time? Should MSG and forthcoming MTG be used to simulate MFG to derive operational product?

Conclusions (user perspective)

- Satellite-derived solar radiation is more accurate and consistent than currently used measured, modelled and interpolated solar radiation used in the European crop model
- ➤ ERA-Interim can be used as a back-up solution for operationally working systems (such as crop monitoring)
- MFG and MSG solar radiation data are similar enough to create a dataset whose accuracy would satisfy a crop modellers community
- ➤ Is there a possibility to fill the gap between long-term data record and near real-time product?

Thank you for your attention!